Cho I = limits 0^1 xe^2xdx = a.e^2 + b với a,b thuộc Q. Giá trị của tổng (a + b) là A. 1/2 B. 1/4 C. 0. D. 1.
Hướng dẫn giải
Sử dụng phương pháp từng phần.
Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{2x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \frac{1}{2}{e^{2x}}\end{array} \right..\)
Khi đó \(I = u.v\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. - \int\limits_0^1 {v.du} = \frac{1}{2}x.{e^{2x}}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. - \frac{1}{2}\int\limits_0^1 {{e^{2x}}dx} = \frac{1}{2}x.{e^{2x}}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. - \frac{1}{4}{e^{2x}}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. = \frac{1}{4}{e^2} + \frac{1}{4}.\)
Suy ra \(a.{e^2} + b = \frac{1}{4}{e^2} + \frac{1}{4}.\)
Đồng nhất hệ số hai vế ta có \(a = \frac{1}{4},b = \frac{1}{4}.\) Vậy \(a + b = \frac{1}{2}.\)
Chọn A.