Cho hàm số f( x ) có đạo hàm liên tục trên đoạn [ 0;1], và f( 1 ) - f( 0 ) = căn bậc hai của 14/2 Biết rằng 0 nhỏ hơn bằng f'( x ) nhỏ hơn bằng 2 căn bậc hai của 2x , x thuộc [ 0;1]. Khi đó,

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\), và \(f\left( 1 \right) - f\left( 0 \right) = \frac{{\sqrt {14} }}{2}.\) Biết rằng \(0 \le f'\left( x \right) \le 2\sqrt {2x} ,\forall x \in \left[ {0;1} \right]\). Khi đó, giá trị của tích phân \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} \) thuộc khoảng nào sau đây?
A. \[\left( {2;4} \right)\].
B. \(\left( {\frac{{13}}{3};\frac{{14}}{3}} \right).\)
C. \(\left( {\frac{{10}}{3};\frac{{13}}{3}} \right).\)
D. \(\left( {1;3} \right).\)

Trả lời

Hướng dẫn giải

Do \(0 \le f'\left( x \right) \le 2\sqrt {2x} ,\forall x \in \left[ {0;1} \right]\) nên \(0 \le {\left( {f'\left( x \right)} \right)^2} \le 8x,\forall x \in \left[ {0;1} \right].\)

Suy ra \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} \le \int\limits_0^1 {8xdx} \) hay \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx \le 4} \) (1).

Mặt khác, áp dụng BĐT Cauchy-Schwarz, ta có:

\({\left( {\int\limits_0^1 {f'\left( x \right)dx} } \right)^2} \le \int\limits_0^1 {{1^2}dx} .\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} \Leftrightarrow {\left[ {f\left( 1 \right) - f\left( 0 \right)} \right]^2} \le \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} \)

                                                            \( \Leftrightarrow \frac{7}{2} \le \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} \)

Vậy \(\frac{7}{2} \le \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx \le 4.} \)

Chọn C.

Câu hỏi cùng chủ đề

Xem tất cả