Cho hình vuông ABCD có cạnh bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, BC

Bài 14 trang 96 Toán 10 Tập 2: Cho hình vuông ABCD có cạnh bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, BC.

a) Biểu thị các vectơ DM,  AN theo các vectơ AB,  AD

b) Tính DM    AN và tìm góc giữa hai đường thẳng DM và AN.

Trả lời

Bài 14 trang 96 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

a) Vì M là trung điểm của AB nên AM=12AB

Do đó, ta có: DM=AMAD=12ABAD

Vì N là trung điểm của BC nên BN=12BC

Do ABCD là hình vuông nên BC=AD. Khi đó, BN=12AD

Theo quy tắc ba điểm ta có: AN=AB+BN=AB+12AD

b) Do ABCD là hình vuông nên ta có: AB = AD = a,AB  AD=0 (AB ⊥ AD). 

Từ đó suy ra DM    AN=12ABADAB+12AD

=12AB2+14ABADADAB12AD2

=12AB2+140012AD2

=12AB2AD2=0

Do đó: DM    AN=0DMANDMAN.

Vậy góc giữa hai đường thẳng  DM và AN bằng 90°. 

 

 

Câu hỏi cùng chủ đề

Xem tất cả