Cho hình thang ABCD (AB // CD) và các điểm M, N lần lượt trên cạnh AD và BC sao cho 2AM = MD

Bài 9.16 trang 92 Toán 8 Tập 2: Cho hình thang ABCD (AB // CD) và các điểm M, N lần lượt trên cạnh AD và BC sao cho 2AM = MD, 2BN = NC. Biết AB = 5 cm, CD = 6 cm, hãy tính độ dài đoạn thẳng MN.

Trả lời

Bài 9.16 trang 92 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Vẽ đường thẳng qua M song song với CD cắt AC tại E.

Khi đó: AEEC=AMMD=12  (định lí Thalès).

Do đó AEEC=BNNC=12  (2BN = NC), suy ra NE // AB (định lí Thalès đảo).

Ta có:

ME // CD

NE // AB

AB // CD

Do đó ME // CD và NE // CD, suy ra M, N, E thẳng hàng.

Mặt khác ∆AME ∽ ∆ADC (vì ME // CD).

Nên MEDC=AMAD=13ME=DC3=63=2(cm).

Tương tự ∆CEN ∽ ∆CAB (vì NE //AB) nên ENAB=CNCB=23EN=2AB3=103 (cm).

Vậy MN = ME + EN = 163 (cm).

Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 33: Hai tam giác đồng dạng

Bài 34: Ba trường hợp đồng dạng của hai tam giác

Luyện tập chung (trang 91)

Bài 35: Định lí Pythagore và ứng dụng

Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Bài 37: Hình đồng dạng

Câu hỏi cùng chủ đề

Xem tất cả