Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi góc anpha là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi α là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc φ với tanφ=52. Mặt phẳng α chia khối lặp phương thành hai khối đa diện có thể tích là V1,V2 với V1>V2. Tính V1.

A. V1=712a3

B. V1=1017a3

C. V1=724a3

D. V1=1724a3

Trả lời

Chọn D

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi góc anpha là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc (ảnh 1)

Mặt phẳng α là mặt phẳng đi qua CD’ và cắt C'B' tại I A'B'C'D'α=D'I.

Kẻ C'HDIDICHφ=CHC'^.

Ta có ΔCC'H vuông tại C'C'H=C'C.cotφ=2a5.

Ta có ΔC'D'I vuông tại 1C'H2=1C'D'2+1C'I2C'I2=4a2C'I=2a.

Ta thấy với C'I = 2a thì CIB'B=Q nên Q là trung điểm BB'.

D'IA'B'=P nên P là trung điểm A'B'.

Ta có:

VI.CC'D'=VI.B'PQ+VCD'C'.QPB'VCD'C'.QPB'=VI.CC'D'VI.B'PQ=13.2a.12a.a13.a.12a.a=7a324=V2

VABCD.A'B'C'D'=V1+V2=V1+VCD'C'.QPB'V1=VABCD.A'B'C'D'VCD'C'.QPB'=a37a324=17a324.

Vậy V1=17a324.

Câu hỏi cùng chủ đề

Xem tất cả