Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B
1.2k
14/08/2023
Bài 3 trang 113 Toán 11 Tập 1: Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B’.
a) Chứng minh rằng EF // (BCC’B’).
b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.
Trả lời
a)
Gọi M là trung điểm của BC.
Trong mp(ABC), xét ABC có E, M lần lượt là trung điểm của AC, BC nên EM là đường trung bình của tam giác
Do đó EM // AB và EM = AB.
Mà AB // A’B’ nên EM // A’B’ hay EM // FB’.
Lại có AB = A’B’ và FB’ = A’B’ nên EM = FB’.
Trong mp(EMB’F), xét tứ giác EMB’F có EM // FB’ và EM = FB’ nên là hình bình hành.
Do đó EF // B’M, mà B’M ⊂ (BCC’B’) nên EF // (BCC’B’).
b)
Gọi N là trung điểm của AB.
Trong mp(ABB’A’), xét hình bình hành ABB’A’ cũng là hình thang có N, F lần lượt là trung điểm của AB, A’B’ nên NF là đường trung bình của hình thang
Do đó NF // BB’ và .
Mà BB’ // CC’ nên NF // CC’.
Lại có BB’ = CC’ nên NF = CC’.
Trong mp(NFC’C), xét tứ giác NFC’C có NF // CC’ và NF = CC’ nên là hình bình hành.
Do đó hai đường chéo CF và NC’ cắt nhau tại trung điểm của mỗi đường.
Lại có NC’ ⊂ (ABC’) nên CF cắt (ABC’) tại trung điểm I của CF.
Vậy CF cắt (ABC’) tại trung điểm I của CF.