Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A
Luyện tập 3 trang 113 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.
Luyện tập 3 trang 113 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.
Trong mặt phẳng (ABC’D’), xét tứ giác ABC’D’ có:
AB // C’D’ (cùng song song với DC);
AB = C’D’ (cùng bằng DC)
Do đó tứ giác ABC’D’ là hình bình hành.
Suy ra hai đường chéo AC’ và BD’ cắt nhau tại trung điểm O của mỗi đường.
Khi đó (ABC’D’) đi qua điểm O.
Tương tự ta cũng có tứ giác BCD’A’ là hình bình hành có hai đường chéo BD’ và CA’ cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của BD’, do đó O là trung điểm của CA’ và (BCD’A’) đi qua O.
Chứng minh tương tự với các mp(CDA’B’), (DAB’C’) thì các mặt phẳng này cũng đi qua điểm O.
Vậy bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua điểm, điểm O là giao điểm các đường chéo của hình hộp.
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian