Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD

Bài 4.9 trang 83 Toán 8 Tập 1: Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.

Trả lời

Bài 4.9 trang 83 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình chữ nhật nên BAD^=90° và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.

Suy ra AB  AD; O là trung điểm của AC và BD.

Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.

Suy ra OH // AD mà AB  AD nên OH  AB hay AHO^=90°.

Tương tự, ta chứng minh được: OK  AD hay AKO^=90°.

Ta có: BAD^+AHO^+AKO^+HOK^=360°

90°+90°+90°+HOK^=360°

270°+HOK^=360°

Suy ra HOK^=360°270°=90°.

Tứ giác AHOK có BAD^=90°;  AHO^=90°;  AKO^=90°;  HOK^=90° .

Do đó, tứ giác AHOK là hình chữ nhật.

Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả