Cho hình chữ nhật ABCD có AB = 3a, AD = 4a. Khoảng cách từ điểm A đến đường thẳng BC bằng: 2,4a; 3a; 4a; 5a

Bài 45 trang 109 SBT Toán 11 Tập 2Cho hình chữ nhật ABCD có AB = 3a, AD = 4a.

a) Khoảng cách từ điểm A đến đường thẳng BC bằng:

A. 2,4a;

B. 3a;

C. 4a;

D. 5a.

b) Khoảng cách từ điểm A đến đường thẳng BD bằng:

A. 2,4a;

B. 3a;

C. 4a;

D. 5a.

c) Khoảng cách giữa hai đường thẳng AB và CD bằng:

A. 2,4a;

B. 3a;

C. 4a;

D. 5a.

Trả lời

Cho hình chữ nhật ABCD có AB = 3a, AD = 4a

a) Đáp án đúng là: B

Do ABCD là hình chữ nhật nên AB ⊥ BC. Như vậy khoảng cách từ điểm A đến đường thẳng BC bằng độ dài đoạn thẳng AB và bằng 3a.

Vậy d(A, BC) = 3a.

b) Đáp án đúng là: A

Gọi H là hình chiếu của A trên BD nên ta có AH ⊥ BD. Như vậy khoảng cách từ điểm A đến đường thẳng BD là độ dài đoạn thẳng AH.

Do ABCD là hình chữ nhật nên AB ⊥ AD.

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, đường cao AH ta có:

1AH2=1AB2+1AD2

1AH2=13a2+14a2

AH2=144a225AH=12a5=2,4a.

Vậy d(A, BD) = 2,4a.

c) Đáp án đúng là: C

Do ABCD là hình chữ nhật nên AB // CD và AD ⊥ CD. Như vậy khoảng cách giữa hai đường thẳng AB và CD bằng khoảng cách từ điểm A đến đường thẳng CD (vì AB // CD) và bằng AD = 4a (vì AD ⊥ CD).

Vậy d(AB, CD) = 4a.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

Câu hỏi cùng chủ đề

Xem tất cả