Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp ( MNP). Tính SQ/SD    A. SQ/SD = 1/4   B. SQ/SD = 1/3 C.

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp \(\left( {MNP} \right)\). Tính \[\frac{{SQ}}{{SD}}\].
A. \(\frac{{SQ}}{{SD}} = \frac{1}{4}\).
B. \(\frac{{SQ}}{{SD}} = \frac{1}{3}\).
C. \(\frac{{SQ}}{{SD}} = \frac{1}{5}\).
D. \(\frac{{SQ}}{{SD}} = \frac{6}{{25}}\).

Trả lời

Đáp án A

Phương pháp:

Tìm điểm Q.

Sử dụng định lí Menelaus để tính tỉ số.

Cách giải:

Media VietJack

Trong \(\left( {ABCD} \right)\) lấy \(PH||MN\left( {H \in CD} \right)\)

Trong \(\left( {SCD} \right)\) gọi \(Q = NH \cap SD\)

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có: \(\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\)

Mà N là trung điểm của SC \( \Rightarrow \frac{{NC}}{{NS}} = 1\).

Mặt khác áp dụng định lí Ta-lét trong tam giác DPH ta có \(\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\) (vì P là trung điểm của OB).

Do đó ta có \(\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\)

Câu hỏi cùng chủ đề

Xem tất cả