Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp ( MNP). Tính SQ/SD A. SQ/SD = 1/4 B. SQ/SD = 1/3 C.
38
23/04/2024
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp \(\left( {MNP} \right)\). Tính \[\frac{{SQ}}{{SD}}\].
A. \(\frac{{SQ}}{{SD}} = \frac{1}{4}\).
B. \(\frac{{SQ}}{{SD}} = \frac{1}{3}\).
C. \(\frac{{SQ}}{{SD}} = \frac{1}{5}\).
D. \(\frac{{SQ}}{{SD}} = \frac{6}{{25}}\).
Trả lời
Đáp án A
Phương pháp:
Tìm điểm Q.
Sử dụng định lí Menelaus để tính tỉ số.
Cách giải:
Trong \(\left( {ABCD} \right)\) lấy \(PH||MN\left( {H \in CD} \right)\)
Trong \(\left( {SCD} \right)\) gọi \(Q = NH \cap SD\)
Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có: \(\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\)
Mà N là trung điểm của SC \( \Rightarrow \frac{{NC}}{{NS}} = 1\).
Mặt khác áp dụng định lí Ta-lét trong tam giác DPH ta có \(\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\) (vì P là trung điểm của OB).
Do đó ta có \(\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\)