Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M là trung điểm của SA

Bài 3 trang 133 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M là trung điểm của SA. Tìm giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD, biết rằng (P) đi qua M, song song với SC và AD.

Trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M là trung điểm của SA

Gọi O là giao điểm của AC và BD, E là trung điểm của CD.

Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của ∆SAC, suy ra SC // MO.

Mà MO ⊂ (MOE), suy ra SC // (MOE).

Xét ∆ADC có: O, E lần lượt là trung điểm của AC, CD nên OE là đường trung bình của ∆ADC, suy ra AD // OE.

Mà OE ⊂ (MOE), suy ra AD // (MOE).

Khi đó, mặt phẳng (P) đã cho là (MOE).

Trong mặt phẳng (ABCD), gọi F là giao điểm của OE và AB.

Mà OE ⊂ (MOE), AB ⊂ (ABCD)

Suy ra (MOE) ∩ (ABCD) = EF, (MOE) ∩ (SAB) = FM.

Vì M ∈ (MOE) ∩ (SAD) và OE // AD

Nên (MOE) ∩ (SAD) = d, với d là đường thẳng đi qua M và d // AD // OE.

Trong mặt phẳng (SAD), d cắt SD tại N.

Do đó, (MOE) ∩ (SAD) = MN và (MOE) ∩ (SDC) = NE.

Vậy (MOE) ∩ (ABCD) = EF;

(MOE) ∩ (SAB) = FM;

(MOE) ∩ (SAD) = MN;

(MOE) ∩ (SDC) = NE.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả