Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD. M và N lần lượt là trung điểm của CD và SA. G là trọng tâm tam giác SAB. 1) Tìm giao tuyến của hai mặt ph

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Trả lời

Phương pháp:

1) Xác định hai điểm chung của hai mặt phẳng.

2) + Gọi \[Q\] là trung điểm của \[SB\].

+ Chứng minh \[MN\] song song với một đường thẳng bất kì chứa trong \[\left( {SBC} \right)\].

3) + Xác định \[\Delta \].

+ Xác định giao tuyến của \[\left( {SAD} \right)\] và \[\left( {BDG} \right)\].

+ Chứng minh \[P\] là điểm chung của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {BDG} \right)\].

Cách giải:

Media VietJack

1) Tìm \[\left( {SAC} \right) \cap \left( {SBD} \right)\].

+ \[S\] là điểm chung thứ nhất.

+ Trong \[\left( {ABCD} \right)\] có \[AC \cap BD = 0\], ta có:

\[\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right) \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\]

\[ \Rightarrow O\] là điểm chung thứ hai.

Vậy \[\left( {SAC} \right) \cap \left( {SBD} \right) = SO\].

2) Gọi \[Q\] là trung điểm của \[SB\].

\[NQ\] là đường trung bình của tam giác \[SAB \Rightarrow NQ//AB\] và \[NQ = \frac{1}{2}AB\].

\[ \Rightarrow NQ//MC\] và \[NQ = MC \Rightarrow MNQC\] là hình bình hành (dhnb).

\[ \Rightarrow MN//QC\]. Mà \[QC \subset \left( {SAB} \right)\].

Vậy \[MN//\left( {SAB} \right)\].

3) Gọi \[E\] là trung điểm của \[AB\] ta có \[\left( {SMG} \right) \equiv \left( {SME} \right)\].

Xác định \[\left( {SAD} \right) \cap \left( {SME} \right)\].

+ \[S\] là điểm chung thứ nhất.

+ \[\left\{ \begin{array}{l}AD \subset \left( {SAD} \right)\\ME \subset \left( {SME} \right)\\AD//ME\end{array} \right.\]

\[ \Rightarrow \] Giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SME} \right)\] là đường thẳng đi qua \[S\] và song song với

\[AD,\,\,ME\].

Qua \[S\] dựng đường thẳng song song với \[AD\] cắt \[OG\] tại \[P \Rightarrow \Delta \equiv SP\].

Nội \[BN\] ta có \[\left( {SAD} \right) \cap \left( {BDN} \right) = DN\].

\[\left\{ \begin{array}{l}P \in \Delta = \left( {SAD} \right) \cap \left( {SBC} \right) \Rightarrow P \in \left( {SAD} \right)\\P \in OQ \subset \left( {BDG} \right) \Rightarrow P \in \left( {BDG} \right)\end{array} \right. \Rightarrow P \in \left( {SAD} \right) \cap \left( {BDG} \right)\]

Vậy \[P \in DN\] hay \[P,N,D\] thẳng hàng.

Câu hỏi cùng chủ đề

Xem tất cả