Cho hình chóp S.ABCD có ABCD là hình thang cân đáy lớn AD. Gọi M, N, P lần lượt là trung điểm của AB, CD, SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {MNP} \right)\) là   

Cho hình chóp S.ABCDABCD là hình thang cân đáy lớn AD. Gọi M, N, P lần lượt là trung điểm của AB, CD, SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {MNP} \right)\)
A. hình bình hành.
B. hình thang.
C. hình chữ nhật.
D. hình vuông.

Trả lời

Đáp án B

Phương pháp:

Dạng thiết diện có sử dụng yếu tố song song.

Cách giải:

\[MN\] là đường trung bình của hình thang \(ABCD \Rightarrow MN||AD||BC\).

Ta có: \(\left\{ \begin{array}{l}\left( {MNP} \right) \supset MN\\\left( {SBC} \right) \supset BC\\MN||BC\left( {cmt} \right)\\P \in \left( {MNP} \right) \cap \left( {SBC} \right)\end{array} \right.\) Þ Giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(P\) và song song với \(MN,BC\).

Gọi \(Q\) là trung điểm của \(SC \Rightarrow PQ||BC\) (\(PQ\) là đường trung bình của tam giác \[SBC\]) \[ \Rightarrow \left( {MNP} \right) \cap \left( {SBC} \right) = PQ\].

Vậy thiết diện của hình chóp cắt bởi \(\left( {MNP} \right)\) là tứ giác \[MNPQ\].

Do \[PQ||BC||MN \Rightarrow MNPQ\] là hình thang.

Media VietJack

Câu hỏi cùng chủ đề

Xem tất cả