Cho hình chóp đều S.ABC có góc ASB = 30 độ, SA = 1. Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’

Cho hình chóp đều S.ABC ASB^=30°,SA=1 . Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’ nhỏ nhất. Tỉ số VS.AB'C'VS.ABC  gần giá trị nào nhất trong các giá trị sau?

A. 0,5

B. 0,6

C. 0,55

D. 0,65

Trả lời

Đáp án đúng là: C

 Cho hình chóp đều S.ABC có góc ASB = 30 độ, SA = 1. Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’  (ảnh 1) Cho hình chóp đều S.ABC có góc ASB = 30 độ, SA = 1. Lấy B’, C’ lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB’C’  (ảnh 2)

 

Trải hình, ta có AA',SA=SB=1 ,ASB^=30°

 

ΔSAA'vuông cân tại S SAA'^=45°.

Ta có chu vi ΔAB'C'  2p=AB'+AC'+B'C'AA' .

Do đó chu vi ΔAB'C'  nhỏ nhất B',C'AA'.

Gọi I là trung điểm của BC và H là giao điểm của SI và B'C'.

Ta

SH=SA.sinSAH^=1.sin45°=22;SI=SB.sinSBI^=1.sin75°=241+3 .

B'C'//BC  nên VS.AB'C'VS.ABC=SB'SB.SC'SC=SHSI.SHSI=SHSI2=423 .

Vậy tỉ số VS.AB'C'VS.ABC  gần giá trị 0,55 nhất trong các giá trị đã cho.

Câu hỏi cùng chủ đề

Xem tất cả