Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K
Bài 4.17 trang 88 Toán 8 Tập 1: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.
Bài 4.17 trang 88 Toán 8 Tập 1: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.
Vì ABCD là hình bình hành nên AB // CD, AD // BC suy ra AN // cD, ad // ck.
Áp dụng định lí Thalès vào tam giác AMN có AN // CD, ta được:
(1)
Áp dụng định lí Thalès vào tam giác ADM có CK // AD, ta được:
(2)
Từ (1) và (2) suy ra: .
Do đó DM2 = MN . MK(đpcm).
Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác: