Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác của góc B cắt AC tại F

Bài 23 trang 67 SBT Toán 8 Tập 2Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác của góc B cắt AC tại F. Chứng minh:

a) BEED=AFFC;

b) EF // AB.

Trả lời

Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác

a) Tam giác ABD có AE là đường phân giác của góc A nên EBED=ABAD (1).

Tam giác ABC có BF là đường phân giác của góc B nên FAFC=BABC (2).

Vì ABCD là hình bình hành nên AD = BC, do đó ABAD=BABC (3)

Từ (1) và (2) suy ra EBED=FAFC.

b) Ta có: EBED=FAFC suy ra EB+EDED=FA+FCFC hay BDED=ACFC

Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Khi đó O là trung điểm của AC, BD nên BD = 2OD và AC = 2OC.

Do đó 2ODED=2OCFC hay ODED=OCFC.

Xét ∆ODC có ODED=OCFC nên EF // CD (định lí Thalès đảo)

Mà AB // CD (do ABCD là hình bình hành)

Do đó EF // AB.

Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:

Bài 2: Ứng dụng của định lí Thalès trong tam giác

Bài 3: Đường trung bình của tam giác

Bài 4: Tính chất đường phân giác của tam giác

Bài 5: Tam giác đồng dạng

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác

Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Câu hỏi cùng chủ đề

Xem tất cả