Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M

Bài 4.20 trang 55 SBT Toán 8 Tập 1: Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác D cắt AC tại N. Chứng minh MN // AD.

Trả lời

Cho hình bình hành ABCD AC cắt BD tại O. Đường phân giác góc A cắt BD tại M

Trong ∆ABD có: AM là phân giác của góc BAD^ nên ABAD=MBMD(tính chất đường phân giác trong tam giác)

Tương tự: trong ∆ADC có DN là phân giác góc ADC^ nên DCDA=NCNA

Mà AB = DC (do ABCD là hình bình hành) suy ra MBMD=NCNA.

Từ đó, ta có: MBMD+1=NCNA+1 hay MB+MDMD=NC+NANA 

Suy ra BDMD=ACNA(1)

Mà ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường, suy ra BD = 2DO, AC = 2AO (2)

Từ (1) và (2) suy ra 2DODM=2AOAN hay DODM=AOAN

Xét OAD có DODM=AOAN nên MN // AD (định lí Thalès đảo).

Xem thêm các bài giải Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:

Bài 16: Đường trung bình của tam giác

Bài 17: Tính chất đường phân giác của tam giác

Bài tập cuối chương 4

Bài 18: Thu thập và phân loại dữ liệu

Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ

Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ

Câu hỏi cùng chủ đề

Xem tất cả