Giải SBT Toán 8 (Kết nối tri thức) Bài 17: Tính chất đường phân giác của tam giác

Với giải sách bài tập Toán 8 Bài 17: Tính chất đường phân giác của tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 (Kết nối tri thức) Bài 17: Tính chất đường phân giác của tam giác

Bài 4.11 trang 52 SBT Toán 8 Tập 1: Tìm độ dài x trong Hình 5.12.

Tìm độ dài x trong Hình 5.12 trang 52 sách bài tập Toán 8 Tập 1

Lời giải:

Trong ∆MEF có MK là phân giác của góc M nên ta có KEKF=MEMF(tính chất đường phân giác của tam giác)

Hay 3KF=58,5, suy ra KF=38,55=5,1.

Vậy x = 5,1.

Bài 4.12 trang 52 SBT Toán 8 Tập 1: Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN // BC.

Lời giải:

Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB

Trong ∆AIB, IM là phân giác của AIB^ nên MAMB=IAIB(tính chất đường phân giác của tam giác) (1)

Trong DAIC, IN là phân giác của AIC^ nên NANC=IAIC (tính chất đường phân giác của tam giác) (2)

AI là đường trung tuyến của ∆ABC nên I là trung điểm của BC, do đó IB = IC (3)

Từ (1), (2), (3) ta có:MAMB=NANC

Suy ra MN // BC (định lí Thales đảo).

Bài 4.13 trang 52 SBT Toán 8 Tập 1: Cho ∆ABC có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C (D ∈ BC, E ∈ AC, F ∈ AB). Chứng minh rằng: AEECCDDBBFFA=1.

Lời giải:

Cho ∆ABC có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C

Trong ∆ABC có AD là phân giác của BAC^ nên DCDB=ACAB (tính chất đường phân giác của tam giác).

Tương tự, ta có BE, CF lần lượt là tia phân giác của B^,C^.

Suy ra EAEC=BABC;FBFA=CBCA.

Do đó: AEECCDDBBFFA=BABCACABCBCA=1

Bài 4.14 trang 52 SBT Toán 8 Tập 1: Cho tam giác ABC, phân giác AD (D ∈ BC). Kẻ DE // AB (E ∈ AC). Chứng minh rằng: AB.EC = AC.EA.

Lời giải:

Cho tam giác ABC phân giác AD (D ∈ BC). Kẻ DE // AB E ∈ AC

Trong ∆ABC có AD là phân giác của BAC^ nên DBDC=ABAC (tính chất đường phân giác của tam giác).

Trong ∆ADC có DE // AB nên DBDC=EAEC (định lí Thalès trong tam giác).

Suy ra ABAC=EAEC nên AB.EC = AC.EA.

Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác: 

Bài 15: Định lí Thalès trong tam giác

Bài 16: Đường trung bình của tam giác

Bài tập cuối chương 4

Bài 18: Thu thập và phân loại dữ liệu

Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ

Xem tất cả hỏi đáp với chuyên mục: Tính chất đường phân giác của tam giác sbt
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!