Cho Hình 4.20, biết AB = CB, AD = CD, góc DAB=90o, góc BDC=30o. Chứng minh rằng 

Bài 4.6 trang 67 Toán 7 Tập 1: Cho Hình 4.20, biết AB = CB, AD = CD, DAB^=90°,

BDC^=30°.

a) Chứng minh rằng ΔABD=ΔCBD.

b) Tính ABC^.

Tài liệu VietJack

Trả lời

GT

ΔABD,ΔCBD; 

AB = CB, AD = CD, DAB^=90°,BDC^=30°. 

KL

a) ΔABD=ΔCBD.

b) Tính ABC^. 

 

 

 

 

 

 

Tài liệu VietJack

a) Chứng minh (hình vẽ trên):

Hai tam giác ABD và CBD có:

AB = CB (theo giả thiết);

AD = CD (theo giả thiết);

BD là cạnh chung.

Vậy ΔABD=ΔCBD(c.c.c).

b) Vì ΔABD=ΔCBD (chứng minh câu a)

Nên BDA^=BDC^ (hai góc tương ứng) và ABD^=CBD^ (hai góc tương ứng).

Mà BDC^=30° (theo giả thiết), do đó BDA^=30°.

Trong tam giác ABD có DAB^=90° nên là tam giác vuông tại A, khi đó hai góc nhọn của tam giác ABD phụ nhau.

Do đó ABD^+BDA^=90°.

Suy ra ABD^=90°BDA^  

ABD^=90°30°

ABD^=60°

Tia BD nằm giữa hai tia BA và BC nên ABC^=ABD^+CBD^.

Mà ABD^=CBD^ (chứng minh trên), do đó ABC^=ABD^+ABD^.

Hay ABC^=2ABD^=2.60°=120°.

Vậy ABC^=120°.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 3 trang 59

Bài 12: Tổng các góc trong một tam giác

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Luyện tập chung trang 68

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Luyện tập chung trang 74

Câu hỏi cùng chủ đề

Xem tất cả