Cho hàm số f( x ) có đạo hàm liên tục trên đoạn [ 0;1] thỏa mãn f( 1 ) = 0, limits 0^1 f'( x )]^2dx = 7 và limits 0^1 x^3.f'( x )dx =  - 1. Giá trị I = limits 0^1 f( x )dx là A. 1.  B. 7/4  

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) thỏa mãn \(f\left( 1 \right) = 0\), \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx = 7} \) và \(\int\limits_0^1 {{x^3}.f'\left( x \right)dx = - 1.} \) Giá trị \(I = \int\limits_0^1 {f\left( x \right)dx} \) là
A. 1.
B. \(\frac{7}{4}.\)
C. \(\frac{7}{5}.\)
D. 4.

Trả lời

Hướng dẫn giải

Ta có \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx = 7} \) (1).

\(\int\limits_0^1 {{x^6}dx} = \frac{1}{7} \Rightarrow \int\limits_0^1 {49{x^6}dx} = 7\) (2).

và \(\int\limits_0^1 {14{x^3}.f'\left( x \right)dx = - 14} \) (3).

Cộng hai vế (1), (2) và (3) suy ra

\(\int\limits_0^1 {{{\left[ {f'\left( x \right) + 7{x^3}} \right]}^2}dx = 0} \) mà \({\left[ {f'\left( x \right) + 7{x^3}} \right]^2} \ge 0\)

\( \Rightarrow f'\left( x \right) = - 7{x^3}.\)

Hay \(f\left( x \right) = - \frac{{7{x^4}}}{4} + C.\)

\(f\left( 1 \right) = 0 \Rightarrow - \frac{7}{4} + C = 0 \Rightarrow C = \frac{7}{4}.\)

Do đó \(f\left( x \right) = - \frac{{7{x^4}}}{4} + \frac{7}{4}.\)

Vậy \(\int\limits_0^1 {f\left( x \right)dx} = \int\limits_0^1 {\left( { - \frac{{7{x^4}}}{4} + \frac{7}{4}} \right)dx = \frac{7}{5}} .\)

Chọn C.

Câu hỏi cùng chủ đề

Xem tất cả