Cho hai mặt phẳng (P), (Q) vuông góc và cắt nhau theo giao tuyến d, đường thẳng a song song với (P)
117
08/12/2023
Bài 34 trang 103 SBT Toán 11 Tập 2: Cho hai mặt phẳng (P), (Q) vuông góc và cắt nhau theo giao tuyến d, đường thẳng a song song với (P). Phát biểu nào sau đây đúng?
A. Nếu a ⊥ d thì a ⊥ (Q);
B. Nếu a ⊥ d thì a // (Q);
C. Nếu a ⊥ d thì a // b với mọi b ⊂ (Q);
C. Nếu a ⊥ d thì a // c với mọi c // (Q).
Trả lời
Đáp án đúng là: A
· Đáp án A đúng: Lấy mặt phẳng (R) bất kì chứa đường thẳng a và cắt (P) theo giao tuyến là đường thẳng a’.
Ta có: a’ = (R) ∩ (P) và a // (P) nên suy ra a // a’.
Nếu a ⊥ d, mà a // a’ nên a’ ⊥ d.
Lại có: (P) ⊥ (Q), d = (P) ∩ (Q), a’ ⊂ (P) và a’ ⊥ d nên suy ra a’ ⊥ (Q).
Mà a // a’ nên a ⊥ (Q).
Vậy nếu a ⊥ d thì a ⊥ (Q).
· Đáp án B sai: Vì nếu a ⊥ d thì a ⊥ (Q).
· Đáp án C sai: Vì nếu a ⊥ d thì a ⊥ (Q) nên suy ra a ⊥ b với mọi b ⊂ (Q).
· Đáp án D sai:
Lấy mặt phẳng (M) bất kì chứa đường thẳng c và cắt (Q) theo giao tuyến là đường thẳng c’.
Ta có: c’ = (M) ∩ (Q) và c // (Q) nên suy ra c // c’.
Nếu a ⊥ d thì a ⊥ (Q) (cmt), mà c’ ⊂ (Q) nên a ⊥ c’.
Ta thấy: a ⊥ c’, c // c’ nên suy ra a ⊥ c với mọi c // (Q).
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 4: Hai mặt phẳng vuông góc
Bài 5: Khoảng cách
Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Bài tập cuối chương 8