Cho hai hình chữ nhật ABCD và A'B'C'D' thỏa mãn AC = 3AB, B′D′ = 3A′B′
643
01/12/2023
Bài 9.26 trang 103 Toán 8 Tập 2: Cho hai hình chữ nhật ABCD và A'B'C'D' thỏa mãn AC = 3AB, B′D′ = 3A′B′.
a) Chứng minh rằng ΔABC ∽ ΔA'B'C'.
b) Nếu A'B' = 2AB và diện tích hình chữ nhật ABCD là 2 m2 thì diện tích hình chữ nhật A'B'C'D' là bao nhiêu?
Trả lời
a) Ta có AC = 3AB. Suy ra .
- Có B′D′ = 3A′B′. Suy ra .
Do đó, , suy ra .
Mà A'B'C'D' là hình chữ nhật nên A'C' = B'D', do đó .
Xét tam giác vuông ABC (vuông tại B) và tam giác vuông A'B'C' (vuông tại B') có
.
Suy ra ΔABC ∽ ΔA′B′C′ (cạnh huyền – cạnh góc vuông).
b) Vì A′B′ = 2AB. Suy ra .
Mà ΔABC ∽ ΔA'B'C'. Suy ra .
+ Ta có diện tích hình chữ nhật ABCD là: AB ∙ BC
+ Diện tích hình chữ nhật A'B'C'D' là: A′B′ ∙ B′C′.
Xét tỉ lệ diện tích hai hình chữ nhật ABCD và A'B'C'D', có
.
Suy ra A′B′ ∙ B′C′ = 4AB ∙ BC = 4 ∙ 2 = 8 m2.
Vậy diện tích hình chữ nhật A'B'C'D' là 8 m2.
Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Luyện tập chung (trang 91)
Bài 35: Định lí Pythagore và ứng dụng
Bài 36: Các trường hợp đồng dạng của hai tam giác vuông
Bài 37: Hình đồng dạng
Luyện tập chung (trang 108)
Bài tập cuối chương 9