Cho ΔA'B'C' ∽ ΔABC theo tỉ số k. Gọi A'H' và AH lần lượt là các đường cao đỉnh A' và A của tam giác A'B'C' và tam giác ABC

Bài 9.27 trang 103 Toán 8 Tập 2: Cho ΔA'B'C' ∽ ΔABC theo tỉ số k. Gọi A'H' và AH lần lượt là các đường cao đỉnh A' và A của tam giác A'B'C' và tam giác ABC.

Chứng minh rằng:

a)A'H'AH=k.

b) Diện tích tam giác A'B'C' bằng k2 lần diện tích tam giác ABC.

Trả lời

Bài 9.27 trang 103 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

a) Vì ΔA'B'C' ∽ ∆ABC theo tỉ số k nên B^=B'^;    A'B'AB=A'C'AC=B'C'BC=k .

Xét tam giác A'H'B' vuông tại H' và tam giác AHB vuông tại H có: B^=B'^ .

Do đó ∆A'H'B' ∽ ∆AHB.

Suy ra A'H'AH=A'B'AB=k.

b) Diện tích tam giác ABC là 12AHBC

Diện tích tam giác A'B'C' là 12A'H'B'C'

Xét tỉ lệ diện tích giữa hai tam giác A'B'C' và tam giác ABC:

12A'H'B'C'12AHBC=A'H'AHB'C'BC=kk=k2 Suy ra 12A'H'B'C'=k212AHBC .

Vậy diện tích tam giác A'B'C' bằng k2 lần diện tích tam giác ABC.

Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung (trang 91)

Bài 35: Định lí Pythagore và ứng dụng

Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Bài 37: Hình đồng dạng

Luyện tập chung (trang 108)

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả