Câu hỏi:
19/01/2024 63
Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì:
Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì:
A. m = 1;
A. m = 1;
B. m = –1;
B. m = –1;
C. ;
D. Cả A và C đều đúng.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét f(x) = (m – 3)x2 + (m + 3)x – (m + 1).
Ta có:
∆ = (m + 3)2 – 4.(m – 3).[–(m + 1)]
= m2 + 6m + 9 + 4.(m – 3)(m + 1)
= m2 + 6m + 9 + 4(m2 – 2m – 3)
= 5m2 – 2m – 3.
Ta có f(x) là một tam thức bậc hai và có nghiệm kép khi và chỉ khi a ≠ 0 và ∆ = 0.
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho f(x) = mx2 + 2(m + 1)x + m – 2. Với giá trị nào của tham số m thì f(x) là tam thức bậc hai và f(x) > 0 có nghiệm?
Cho f(x) = mx2 + 2(m + 1)x + m – 2. Với giá trị nào của tham số m thì f(x) là tam thức bậc hai và f(x) > 0 có nghiệm?
Câu 2:
Cho f(x) = ax2 + bx + c (a ≠ 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 5). Kết luận nào sau đây đúng?
Cho f(x) = ax2 + bx + c (a ≠ 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 5). Kết luận nào sau đây đúng?
Câu 3:
Cho f(x) = mx2 – 2mx + m – 1. Giá trị nào của m để f(x) ≥ 0 vô nghiệm?
Cho f(x) = mx2 – 2mx + m – 1. Giá trị nào của m để f(x) ≥ 0 vô nghiệm?
Câu 4:
Cho f(x) = x2 + 2(m – 1)x + m2 – 3m + 4. Giá trị của m để f(x) không âm với mọi giá trị của x là:
Cho f(x) = x2 + 2(m – 1)x + m2 – 3m + 4. Giá trị của m để f(x) không âm với mọi giá trị của x là: