Câu hỏi:
30/01/2024 54Cho \[\Delta ABC\] có \[\widehat A = 100^\circ \], \[\widehat B - \widehat C = 40^\circ \]. Số đo góc B và C lần lượt là
A. \[\widehat B = 60^\circ \], \[\widehat C = 20^\circ \];
B. \[\widehat B = 20^\circ \], \[\widehat C = 60^\circ \];
C. \[\widehat B = 70^\circ \], \[\widehat C = 20^\circ \];
D. \[\widehat B = 80^\circ \], \[\widehat C = 30^\circ \].
Trả lời:
Đáp án đúng là: A
Xét tam giác ABC có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng 3 góc trong tam giác)
Mà \[\widehat A = 100^\circ \]
⇒ \(100^\circ + \widehat B + \widehat C = 180^\circ \)
⇒ \(\widehat B + \widehat C = 80^\circ \)
Lại có: \[\widehat B - \widehat C = 40^\circ \]
⇒ \(\widehat B = \left( {80^\circ + 40^\circ } \right):2 = 60^\circ \)
⇒ \(\widehat C = 80^\circ - 60^\circ = 20^\circ \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[\Delta ABC\] vuông tại A. Tia phân giác của góc B cắt AC tại E. Hãy chọn đáp án đúng.
Câu 2:
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Biết \(\widehat {ABC} = 60^\circ \). Số đo góc BDC là
Câu 3:
Cho \[\Delta ABC\] có \[\widehat A = 50^\circ \], \[\widehat B = 70^\circ \]. Tia phân giác của góc C cắt cạnh AB tại M. Tính số đo các góc AMC, BMC.
Câu 5:
Cho tam giác ABC, khi đó \(\widehat A + \widehat B + \widehat C\) bằng
Câu 10:
Cho \[\Delta ABC\] có \[\widehat A = 60^\circ \], \[\widehat B = \frac{1}{3}\widehat C\]. Số đo góc B là
Câu 11:
Cho \[\Delta ABC\] có \[\widehat A = 30^\circ \], \[\widehat B - \widehat C = 30^\circ \]. Tam giác ABC là
Câu 14:
Cho \[\Delta ABC\] có \[\widehat A + \widehat C = 90^\circ \]. Khi đó \[\Delta ABC\] là