Cho dãy số ( un) có u1 = 1; un + 1 = un + 1/n^2, n thuộc N. Trong các phát biểu sau, có bao nhiêu phát biểu đúng? (I) ( un) là dãy số tăng  (II) ( un) là dãy số bị chặn dưới      (III) (u2 =

Cho dãy số \(\left( {{u_n}} \right)\)\({u_1} = 1;\,{u_{n + 1}} = {u_n} + \frac{1}{{{n^2}}},\,\forall n \in \mathbb{N}\). Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

(I) \(\left( {{u_n}} \right)\) là dãy số tăng                   (II) \(\left( {{u_n}} \right)\) là dãy số bị chặn dưới      (III) \({u_2} = 2{u_1}\)

A. 0
B. 1
C. 2
D. 3

Trả lời

Đáp án D

Phương pháp:

Cho dãy số \(\left( {{u_n}} \right)\)

+ \(\left( {{u_n}} \right)\) là dãy số tăng khi \({u_n} > {u_{n - 1}}\) \(\left( {\forall n \in \mathbb{N}*} \right)\)

\(\left( {{u_n}} \right)\) là dãy số bị chặn dưới khi tồn tại số \(m\) sao cho \({u_n} \ge m\) \(\left( {\forall n \in \mathbb{N}*} \right)\)

Cách giải:

Ta có \({u_1} = 1;\,{u_{n + 1}} = {u_n} + \frac{1}{{{n^2}}},\,\forall n \in \mathbb{N}\) nên \({u_2} = {u_1} + \frac{1}{{{1^2}}} = 1 + 1 = 2 \Rightarrow {u_2} = 2{u_1}\) nên (III) đúng.

Lại có \({u_{n + 1}} - {u_n} = \frac{1}{{{n^2}}} > 0\) \(\left( {\forall n} \right)\) hay \({u_{n + 1}} > {u_n}\) nên \(\left( {{u_n}} \right)\) là dãy số tăng nên (I) đúng.

\(\left( {{u_n}} \right)\) là dãy số tăng nên ta có \({u_n} \ge {u_1} = 1\) với mọi \(n \in \mathbb{N}*\)

Hay \(\left( {{u_n}} \right)\) là dãy số bị chặn dưới nên (II) đúng.

Câu hỏi cùng chủ đề

Xem tất cả