Câu hỏi:

19/12/2023 92

Cho \(\cos \alpha = \frac{1}{3}\). Tính \(A = \frac{{\tan \alpha + 4\cot \alpha }}{{\tan \alpha + \cot \alpha }}\).

A. \(\frac{4}{3}\);

Đáp án chính xác

B. \(\frac{1}{3}\);

C. \(\frac{2}{3}\);

D. 1.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Ta có

\(A = \frac{{\tan \alpha + 4\cot \alpha }}{{\tan \alpha + \cot \alpha }}\)\( = \frac{{\tan \alpha + 4.\frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}}\)\( = \frac{{\frac{{{{\tan }^2}\alpha + 4}}{{\tan \alpha }}}}{{\frac{{{{\tan }^2}\alpha + 1}}{{\tan \alpha }}}}\)

\( = \frac{{{{\tan }^2}\alpha + 4}}{{{{\tan }^2}\alpha + 1}} = \frac{{\frac{1}{{{{\cos }^2}\alpha }} + 3}}{{\frac{1}{{{{\cos }^2}\alpha }}}} = 1 + 3{\cos ^2}\alpha \).

Thay \(\cos \alpha = \frac{1}{3}\) vào biểu thức \(A = 1 + 3.{\left( {\frac{1}{3}} \right)^2} = 1 + 3.\frac{1}{9} = \frac{4}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.

Xem đáp án » 19/12/2023 109

Câu 2:

Cho góc α (0° < α < 180°) với \(\cot \alpha = - \sqrt 2 \). Tìm mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 19/12/2023 109

Câu 3:

Tính giá trị của cosα biết 0° < α < 180°, α ≠ 90°, \(\sin \alpha = \frac{2}{5}\) và tanα + cotα > 0.

Xem đáp án » 19/12/2023 106

Câu 4:

Cho góc α (0° < α < 180°) với \(\cos \alpha = \frac{1}{3}\). Giá trị của sinα bằng:

Xem đáp án » 19/12/2023 97

Câu 5:

Cho góc α thỏa mãn \(\tan \alpha = 3\) và 0° < α < 90°. Tính P = cosα + sinα.

Xem đáp án » 19/12/2023 89

Câu 6:

Cho góc α với \(\cos \alpha = \frac{{\sqrt 2 }}{2}\). Tính giá trị của biểu thức A = 2sin2α + 5cos2α.

Xem đáp án » 19/12/2023 83

Câu 7:

Cho góc α thỏa mãn cotα = 3. Tính P = sin4α – cos4α.

Xem đáp án » 19/12/2023 83

Câu 8:

Cho góc α thỏa mãn tanα = 5. Tính \(P = \frac{{2\sin \alpha + 3\cos \alpha }}{{3\sin \alpha - 2\cos \alpha }}\).

Xem đáp án » 19/12/2023 81

Câu 9:

Cho góc α (0° < α < 180°) thỏa mãn \(\cos \alpha = \frac{5}{{13}}\).

Giá trị của biểu thức \(P = 2\sqrt {4 + 5\tan \alpha } + 3\sqrt {9 - 12\cot \alpha } \) là:

Xem đáp án » 19/12/2023 80

Câu 10:

Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết \(\tan \alpha = - 2\sqrt 2 \) .

Xem đáp án » 19/12/2023 75

Câu 11:

Tính các giá trị lượng giác còn lại của góc α biết sinα = \[\frac{1}{3}\] và 90° < α < 180°.

Xem đáp án » 19/12/2023 74

Câu hỏi mới nhất

Xem thêm »
Xem thêm »