Cho các tập hợp A = [– 1; 2), B = (– ∞; 1]. Xác định A ∩ B, A ∪ B, A \ B, B \ A, ℝ \ B; CℝA
Bài 52 trang 17 SBT Toán 10 Tập 1: Cho các tập hợp A = [– 1; 2), B = (– ∞; 1]. Xác định A ∩ B, A ∪ B, A \ B, B \ A, ℝ \ B; CℝA.
Bài 52 trang 17 SBT Toán 10 Tập 1: Cho các tập hợp A = [– 1; 2), B = (– ∞; 1]. Xác định A ∩ B, A ∪ B, A \ B, B \ A, ℝ \ B; CℝA.
Ta có: A = [– 1; 2) = {x ∈ ℝ| – 1 ≤ x < 2}
B = (– ∞; 1] = {x ∈ ℝ| x ≤ 1}
Khi đó:
A ∩ B = {x ∈ ℝ| – 1 ≤ x < 2, x ≤ 1} = {x ∈ ℝ| – 1 ≤ x ≤ 1} = [– 1; 1].
A ∪ B = {x ∈ ℝ| – 1 ≤ x < 2 hoặc x ≤ 1} = {x ∈ ℝ| x < 2} = (– ∞; 2).
A \ B = {x ∈ ℝ| – 1 ≤ x < 2} \ {x ∈ ℝ| x ≤ 1} = {x ∈ ℝ| 1 < x < 2} = (1; 2).
B \ A = {x ∈ ℝ| x ≤ 1} \ {x ∈ ℝ| – 1 ≤ x < 2} = {x ∈ ℝ| x < – 1} = (– ∞; – 1).
ℝ \ B = ℝ \ {x ∈ ℝ| x ≤ 1} = {x ∈ ℝ| x > 1} = (1; +∞)
CℝA = ℝ \ {x ∈ ℝ| – 1 ≤ x < 2} = {x ∈ ℝ| x < – 1, x ≥ 2} = (– ∞; – 1) ∪ [2; +∞).
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Tập hợp. Các phép toán trên tập hợp
Bài 1: Bất phương trình bậc nhất hai ẩn