Cho các mệnh đề: P: “Tam giác ABC là tam giác vuông tại A”
387
08/05/2023
Bài 7 trang 95 Toán 10 Tập 2: Cho các mệnh đề:
P: “Tam giác ABC là tam giác vuông tại A”;
Q: “Tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”.
a) Hãy phát biểu các mệnh đề: P ⇒ Q, Q ⇒ P, P ⇔ Q, ⇒. Xét tính đúng sai của các mệnh đề này.
b) Dùng các khái niệm “điều kiện cần” và “điều kiện đủ” để diễn tả mệnh đề P ⇒ Q.
c) Gọi X là tập hợp các tam giác ABC vuông tại A, Y là tập hợp các tam giác ABC có trung tuyến AM = BC. Nêu mối quan hệ giữa hai tập hợp X và Y.
Trả lời
a) Phát biểu các mệnh đề và xét tính đúng sai của mỗi mệnh đề như sau:
+) P ⇒ Q: “Nếu tam giác ABC là tam giác vuông tại A thì tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”. Mệnh đề này là mệnh đề đúng (theo định lý Pythagore).
+) Q ⇒ P: “Nếu tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC là tam giác vuông tại A”. Mệnh đề này là mệnh đề đúng (theo định lý Pythagore).
+) P ⇔ Q: “Tam giác ABC là tam giác vuông tại A khi và chỉ khi tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”. Mệnh đề P ⇔ Q là mệnh đề đúng (Vì P ⇒ Q và Q ⇒ P đúng).
+) ⇒ : “Nếu tam giác ABC không là tam giác vuông tại A thì tam giác ABC có các cạnh thỏa mãn AB2 + AC2 ≠ BC2”. Mệnh đề này là mệnh đề đúng.
b)
+) Tam giác ABC là tam giác vuông tại A là điều kiện đủ để tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2.
+) Tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2 là điều kiện cần để tam giác ABC là tam giác vuông tại A.
c) Ta biết rằng một tam giác là vuông khi và chỉ khi đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
Do đó, nếu tam giác ABC có trung tuyến AM = BC thì tam giác ABC vuông tại A.
Vậy mối quan hệ giữa hai tập hợp X và Y là X = Y.