Câu hỏi:
10/04/2024 31
Cho biểu thức \[{\rm{A}} = \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right) + {\rm{x}} - 1\]. Tính giá trị của biểu thức A tại x = 5.
A. A = 20
B. A = 40
C. A = 16
D. A = 28
Trả lời:
Lời giải
Đáp án đúng là: B
Ta có: \[{\rm{A}} = \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right) + {\rm{x}} - 1\]
\[ = \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right) + \left( {{\rm{x}} - 1} \right)\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 2} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3 + 1} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 2} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {{{\left( {{\rm{x}} - 2} \right)}^2} + 1} \right]\]
Tại x = 5, ta có:
\[{\rm{A}} = \left( {5 - 1} \right)[{\left( {5 - 2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\]
Lời giải
Đáp án đúng là: B
Ta có: \[{\rm{A}} = \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right) + {\rm{x}} - 1\]
\[ = \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} - 2} \right) + \left( {{\rm{x}} - 1} \right)\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right) + \left( {{\rm{x}} - 2} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3 + 1} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 2} \right) + 1} \right]\]
\[ = \left( {{\rm{x}} - 1} \right)\left[ {{{\left( {{\rm{x}} - 2} \right)}^2} + 1} \right]\]
Tại x = 5, ta có:
\[{\rm{A}} = \left( {5 - 1} \right)[{\left( {5 - 2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho x1 và x2 là hai giá trị thỏa mãn \[4\left( {x - 5} \right) - 2x\left( {5 - x} \right) = 0\]. Khi đó\[{{\rm{x}}_1}\; + {{\rm{x}}_2}\;\]bằng
Câu 2:
Kết quả phân tích đa thức \[{{\rm{x}}^2}\; - {\rm{xy}} + {\rm{x}} - {\rm{y}}\] thành nhân tử là:
Câu 3:
Có bao nhiêu giá trị của x thỏa mãn \[{x^3}\; + 2{x^2}\; - 9x - 18 = 0\]?
Câu 4:
Chọn câu trả lời đúng nhất.
Phân tích đa thức thành nhân tử \[{x^2}{y^2}z + x{y^2}{z^2} + {x^2}y{z^2}\].
Chọn câu trả lời đúng nhất.
Phân tích đa thức thành nhân tử \[{x^2}{y^2}z + x{y^2}{z^2} + {x^2}y{z^2}\].