Cho ∆ABC  = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của

Bài 26 trang 73 SBT Toán 7 Tập 2Cho ∆ABC  = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của tam giác MNP.

Trả lời

Sách bài tập Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau  (ảnh 1) 

Vì BO là phân giác của góc ABC nên ABO^=CBO^=ABC^2

Vì CO là phân giác của góc ACB nên ACO^=BCO^=ACB^2

Xét COB ta có: BOC^+OBC^+OCB^=180° (tổng ba góc của một tam giác).

Suy ra OBC^+OCB^=180°BOC^=180°120°=60°.

 CBO^=ABC^2,BCO^=ACB^2. 

Suy ra ABC^2+ACB^2=60°

Do đó ABC^+ACB^=2.60°=120°.

Mặt khác ∆ABC  = ∆MNP nên ta có:

ABC^=MNP^ và ACB^=MPN^(các cặp góc tương ứng).

Suy ra MNP^+MPN^=ABC^+ACB^=120°

Vậy MNP^+MPN^=120°.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 1. Tổng các góc của một tam giác

Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 3. Hai tam giác bằng nhau

Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6. Trường hợp bằng nhau thứ ba của tam giác:

Câu hỏi cùng chủ đề

Xem tất cả