Biết limits 0^pi /4 x/1 + cos 2xdx = api  + bln 2, với a,b là các số hũu tỉ. Giá trị của T = 16a - 8b là A. T = 4.   B. T = 5.   C. T = 2.     D. T =  - 2

Biết \(\int\limits_0^{\frac{\pi }{4}} {\frac{x}{{1 + \cos 2x}}dx = a\pi + b\ln 2,} \) với \(a,b\) là các số hũu tỉ.

Giá trị của \(T = 16a - 8b\) là

A. \(T = 4.\)
B. \(T = 5.\)
C. \(T = 2.\)
D. \(T = - 2.\)

Trả lời

Hướng dẫn giải

Đặt \(A = \int\limits_0^{\frac{\pi }{4}} {\frac{x}{{1 + \cos 2x}}dx} = \int\limits_0^{\frac{\pi }{4}} {\frac{x}{{2{{\cos }^2}x}}} dx = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{x}{{{{\cos }^2}x}}dx} .\)

Đặt \(\left\{ \begin{array}{l}u = x \Rightarrow du = dx\\dv = \frac{1}{{{{\cos }^2}x}}dx \Rightarrow v = \tan x\end{array} \right.\)

Khi đó

\(A = \frac{1}{2}\left[ {x\tan x\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right. - \int\limits_0^{\frac{\pi }{4}} {\tan xdx} } \right] = \frac{1}{2}\left[ {\left( {x\tan x + \ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right.} \right]\)

\( = \frac{1}{2}\left( {\frac{\pi }{4} + \ln \frac{{\sqrt 2 }}{2}} \right) = \frac{1}{2}\left( {\frac{\pi }{4} - \frac{1}{2}\ln 2} \right) = \frac{\pi }{8} - \frac{1}{4}\ln 2.\)

Vậy \(a = \frac{1}{8},b = \frac{{ - 1}}{4}\) do đó \(16a - 8b = 2 + 2 = 4.\)

Chọn A.

Câu hỏi cùng chủ đề

Xem tất cả