Biết I = 0^ln 2 dx/e^x + 3e^ - x + 4  = 1/c ( ln a - ln b +ln c), với (a,b,c) là các số nguyên tố. Giá trị của P = 2a - b + c là A. P =  - 3.   B. P =  - 1.    C. P = 4.      D. P = 3.

Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.

Giá trị của \(P = 2a - b + c\) là

A. \(P = - 3.\)
B. \(P = - 1.\)
C. \(P = 4.\)
D. \(P = 3.\)

Trả lời

Hướng dẫn giải

Ta có \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \int_0^{\ln 2} {\frac{{{e^x}dx}}{{{e^{2x}} + 4{e^x} + 3}}.} \)

Đặt \(t = {e^x} \Rightarrow dt = {e^x}dx.\)

Đổi cận \(x = 0 \Rightarrow t = 1,x = \ln 2 \Rightarrow t = 2.\)

Khi đó

\(I = \int_1^2 {\frac{1}{{{t^2} + 4t + 3}}dt} = \frac{1}{2}\int_1^2 {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 3}}} \right)dt} = \frac{1}{2}\ln \frac{{t + 1}}{{t + 3}}\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = \frac{1}{2}\left( {\ln 3 - \ln 5 + \ln 2} \right).\)

Suy ra \(a = 3,b = 5,c = 2\). Vậy \(P = 2a - b + c = 3.\)

Chọn D.

Câu hỏi cùng chủ đề

Xem tất cả