Cho hình bình hành ABCD có AB = 4, AD = 6, góc BAD = 60độ (Hình 74). a) Biểu thị các vectơ BD, vectơ AC theo vectơ AB, vectơ AD

Bài 8 trang 100 Toán lớp 10 Tập 1: Cho hình bình hành ABCD có AB = 4, AD = 6, BAD^=60° (Hình 74).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Biểu thị các vectơ BD,  AC theo AB,  AD.

b) Tính các tích vô hướng AB.AD,  AB.AC,  BD.AC.

c) Tính độ dài các đường chéo BD, AC.

Trả lời

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Ta có BD=ADAB.

Áp dụng quy tắc hình bình hành ta có AB+AD=AC.

b) Ta có AB.AD=AB.AD.cosAB,AD

= 4 . 6 . cos BAD^ = 24 . cos 60o = 12.

AB.AC=AB.AB+AD=AB2+AB.AD = 42 + 12  = 28.

BD.AC=ADAB.AB+AD=AD.AB+AD2AB2AB.AD 

= 62 - 42 = 20.

c) Áp dụng định lí côsin vào tam giác ABD có:

BD2 = AB2 + AD2 - 2.AB.AD.cos BAD^

 BD2 = 42 + 62 - 2.4.6.cos 60o

 BD2 = 28

 BD = 27

Do ABCD là hình bình hành nên BAD^+ADC^=180°.

Do đó ADC^=180°BAD^=180°60°=120°.

Áp dụng định lí côsin vào tam giác ADC có:

CD2 = AD2 + DC2 - 2.AD.DC.cos ADC^

 CD2 = 62 + 42 - 2.6.4.cos 120o

 CD2 = 76

 CD = 219

Vậy BD = 27; CD = 219.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chủ đề 1: Đo góc

Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Bài 2: Hoán vị. Chỉnh hợp

Câu hỏi cùng chủ đề

Xem tất cả