Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC

Bài 4.15 trang 73 Toán 7 Tập 1Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G, E, H thẳng hàng. Chứng minh rằng:

a) ΔABE=ΔDCE;                             

b) EG = EH.

Tài liệu VietJack

Trả lời

GT

AB = CD, AB // CD;

E là giao điểm của AD và BC;

GAB,HCD;

G, E, H thẳng hàng.

KL

a) ΔABE=ΔDCE;

b) EG = EH.

 Tài liệu VietJack

a) Từ AB // CD (theo giả thiết) suy ra DAB^=ADC^ (hai góc so le trong) và ABC^=DCB^ (hai góc so le trong).

Hay EAB^=EDC^ và ABE^=DCE^.

Xét tam giác ABE và tam giác DCE có:

EAB^=EDC^ (chứng minh trên);

AB = DC (theo giả thiết);

ABE^=DCE^ (chứng minh trên).

Vậy ΔABE=ΔDCE (g.c.g).

b) Từ ΔABE=ΔDCE(chứng minh câu a) suy ra AE = DE (hai cạnh tương ứng).

Xét tam giác AEG và tam giác DEH có:

EAG^=EDH^ (do EAB^=EDC^);

AE = DE (chứng minh trên);

AEG^=DEH^ (hai góc đối đỉnh).

Vậy ΔAEG=ΔDEH (g.c.g).

Suy ra EG = EH (hai cạnh tương ứng).

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Luyện tập chung trang 68

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Luyện tập chung trang 74

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả