Câu hỏi:
19/01/2024 47
∆ABC có a = 5, b = 6, c = 7. Bán kính r của đường tròn nội tiếp ∆ABC bằng:
A. \(\frac{{\sqrt {858} }}{3}\);
B. \(2\sqrt 6 \);
C. \(\frac{{2\sqrt 6 }}{3}\);
D. 8.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Nửa chu vi của ∆ABC là: \(p = \frac{{a + b + c}}{2} = \frac{{5 + 6 + 7}}{2} = 9\).
Diện tích của ∆ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)
\( = \sqrt {9\left( {9 - 5} \right)\left( {9 - 6} \right)\left( {9 - 7} \right)} = 6\sqrt 6 \) (đơn vị diện tích)
Ta có S = p.r
\( \Leftrightarrow r = \frac{S}{p} = \frac{{6\sqrt 6 }}{9} = \frac{{2\sqrt 6 }}{3}\).
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Nửa chu vi của ∆ABC là: \(p = \frac{{a + b + c}}{2} = \frac{{5 + 6 + 7}}{2} = 9\).
Diện tích của ∆ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)
\( = \sqrt {9\left( {9 - 5} \right)\left( {9 - 6} \right)\left( {9 - 7} \right)} = 6\sqrt 6 \) (đơn vị diện tích)
Ta có S = p.r
\( \Leftrightarrow r = \frac{S}{p} = \frac{{6\sqrt 6 }}{9} = \frac{{2\sqrt 6 }}{3}\).
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
∆ABC có AB = 3, AC = 6 và \(\widehat A = 60^\circ \). Độ dài bán kính R của đường tròn ngoại tiếp ∆ABC bằng:
Câu 2:
∆ABC đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng:
Câu 3:
Cho hình thoi ABCD có cạnh bằng 1 cm và có đường chéo AC = \(\sqrt 3 \) cm. Số đo \(\widehat {BAD}\) bằng:
Câu 5:
∆ABC có AB = 5, AC = 8 và \(\widehat {BAC} = 60^\circ \). Bán kính r của đường tròn nội tiếp ∆ABC bằng:
Câu 6:
Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng:
Câu 7:
∆ABC có AB = 5, AC = 10, \(\widehat A = 60^\circ \). Độ dài đường cao ha của ∆ABC bằng: