a) (VD) Giải phương trình sin ^2x + 2 căn bậc hai 3 sin xcos x - cos ^2x =  - 2

a) (VD) Giải phương trình \[{\sin ^2}x + 2\sqrt 3 \sin x\cos x - {\cos ^2}x = - 2\].

Trả lời

Phương pháp

a)

- Xét \[\cos x = 0\] thay vào phương trình và kiểm tra.

- Xét \[\cos x \ne 0\] và chia cả hai vế của phương trình cho \[{\cos ^2}x \ne 0\] đưa về phương trình bậc hai ẩn \[\tan x\].

- Giải phương trình và kết luận nghiệm.

Cách giải

a) Giải phương trình: \[{\sin ^2}x + 2\sqrt 3 \sin x\cos x - {\cos ^2}x = - 2\].

+) Xét \[\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \]. Khi đó \[{\sin ^2}x = 1 - {\cos ^2}x = 1\], thay vào phương trình ta được: \[1 + 0 - 0 = - 2 \Leftrightarrow 1 = - 2\] (vô lí).

Suy ra \[x = \frac{\pi }{2} + k\pi ;k \in \mathbb{Z}\] không phải là nghiệm.

+) Xét \[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ;k \in \mathbb{Z}\], chia hai vế của phương trình cho \[{\cos ^2}x \ne 0\] ta được:

\[\begin{array}{l}\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \frac{{2\sqrt 3 \sin x\cos x}}{{{{\cos }^2}x}} - \frac{{{{\cos }^2}x}}{{{{\cos }^2}x}} = - \frac{2}{{{{\cos }^2}x}} \Leftrightarrow {\tan ^2}x + 2\sqrt 3 \tan x - 1 = - 2\left( {1 + {{\tan }^2}x} \right)\\ \Leftrightarrow 3{\tan ^2}x + 2\sqrt 3 \tan x + 1 = 0 \Leftrightarrow \tan x = - \frac{{\sqrt 3 }}{3} \Leftrightarrow x = \frac{{ - \pi }}{6} + k\pi ,k \in \mathbb{Z}\end{array}\]

Câu hỏi cùng chủ đề

Xem tất cả