70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập khoảng cách Toán 11. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 11, giải bài tập Toán 11 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài giảng Toán 11 Bài 5: Khoảng cách

Kiến thức cần nhớ

Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng

1. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.

Kí hiệu: d(O; a).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Từ giả thuyết ta suy ra:  BD=  BC2+​ CD2=a2

Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').

Xét tam giác BB'D vuông tại B ta có:

1BH2=1B'

2. Khoảng cách từ một điểm đến một mặt phẳng

Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 2. Cho hình chóp S. ABC có SA  (ABC), ∆ABC là tam giác đều cạnh  a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Gọi D là trung điểm BC. Do tam giác ABC đều nên AD  BC (1).

Trong tam giác SAD, kẻ AH  SD (2).

Do SAABCSABCADBCSAAD=ABCSADSBCSAD (3).

Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.

Theo giả thiết, ta có SA = AB = a, AD=a32 (đường cao trong tam giác đều cạnh a).

Tam giác SAD vuông nên

 1AH2=1SA2+1AD21AH2=1a2+43a21AH2=73a2AH=a37

Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

1. Khoảng cách giữa đường thẳng và măt phẳng song song.

- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).

Kí hiệu là d(a; (α)) .

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

2. Khoảng cách giữa hai mặt phẳng song song.

- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.

- Kí hiệu: d((α); (β)).

Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

 Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau

1. Định nghĩa.

a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc  với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.

b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.

- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).

Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N

Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).

Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.

Do đó, ∆ là đường vuông góc chung của a và b.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.

Lời giải :

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Do SABABCD và  BC    ABBCSAB.

Vì tam giác SAB đều nên gọi M là trung điểm của SA thì BMSA nên BM là đoạn vuông góc chung của BC và SA.

Vậy dSA;BC=BM=a32.

3. Nhận xét

a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là

Lời giải :

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Vì SAABCD  SAAD.

Ta có: SAADABADADSABdD,SAB=DA.

Vì CDSABCD  // ABABSAB

Suy ra:  CD // (SAB) nên :

d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,

Các dạng toán về khoảng cách

(Xem chi tiết trong file đính kèm dưới đây)

Dạng 1. Khoảng cách từ một điểm đến đường thẳng.

Dạng 2. Khoảng cách từ một điểm đến mặt phẳng.

Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng.

Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.

Bài tập vận dụng (có đáp án)

Bài 1. Cho hình chóp tam giác S.ABC với SA vuông góc với (ABC) và SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Lời giải:

Kẻ AH vuông góc với BC  

SΔABC=12AH.BCAH=2.SΔABCBC=4a2a=4a

Ta có: SAABC  SABC

Lại có:  AHBC nên BC  ( SAH)

Suy ra: SHBC và khoảng cách từ S đến BC chính là SH .

+ Ta có tam giác vuông  SAH  vuông tại A nên  ta có  SH=SA2+AH2=(3a)2+(4a)2=5a

Bài 2. Cho hình lăng trụ đứng ABC. A'B'C' có đáy là tam giác ABC vuông tại A có BC = 2a, AB=a3. Khoảng cách từ AA' đến mặt phẳng (BCC'B') là:

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ta có AA’//(BCC’B’) nên khoảng cách từ AA' đến mặt phẳng (BCC'B') cũng chính là khoảng cách từ A đến mặt phẳng (BCC'B').

Hạ AHBCAHBCC'B'.

Ta có

1AH2=1AB2+1AC2=13a2+1BC2AB2=13a2+1a2=43a2AH=a32

Vậy khoảng cách từ AA' đến mặt phẳng (BCC'B') bằng a32.

Bài 3. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Gọi H, M lần lượt là trung điểm của AB và CD .

Suy ra HM =1, SH=32 và SM=72

Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD) nên SHABCD.

Vì AB//CD nên AB// (SCD).

Do đó d (B; (SCD)) = d(H; (SCD)) = HK với HKSM trong (SHM).

Ta có: 

1HK2=1SH2+1HM2HK=217

Bài 4. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác vuông tại B, AB = SA= a. Gọi H là hình chiếu của A trên SB. Khoảng cách giữa AH và BC bằng:

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ta có AHSBAHHB.

BCABBCSABCSABBCAH (nên BCBH).

Do đó, d(BC, AH) = HB.

Tam giác SAB vuông cân tại A, AH là đường cao

BH=SB2=a2+a22=a2

Vậy dBC,AH=a2.

Bài tập tự luyện (có đáp án)

(Xem trong file đính kèm bên dưới)

Xem thêm các dạng bài tập Toán chi tiết và hay khác:

90 Bài tập về hai mặt phẳng vuông góc (có đáp án năm 2024)

100 Bài tập về đường thẳng vuông góc với mặt phẳng (có đáp án năm 2024)

500 Bài tập Toán hình 11 chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian (có đáp án năm 2024)

70 Bài tập về hai đường thẳng vuông góc (có đáp án năm 2024)

300 Bài tập Toán hình 11 chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song (có đáp án năm 2024)

70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 1)
Trang 1
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 2)
Trang 2
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 3)
Trang 3
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 4)
Trang 4
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 5)
Trang 5
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 6)
Trang 6
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 7)
Trang 7
70 Bài tập về khoảng cách (có đáp án năm 2024) - Toán 11 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!