30 Bài tập về Trực tâm của tam giác mới nhất (2024) có đáp án

Trực tâm trong tam giác là một trong những kiến thức quan trọng trong hình học và đặc biệt trong các bài tập liên quan tới hình tam giác. Hi vọng qua bài học hôm nay các bạn học sinh nắm vững khái niệm trực tâm là gì và một số tính chất liên quan kèm theo biết cách vận dụng vào giải bài tập Hình học.

Trực tâm của tam giác

Lý thuyết 

Trực tâm của tam giác là giao điểm của ba đường cao của tam giác đó.

Trực tâm của tam giác là gì ? Định nghĩa, tính chất trực tâm tam giác chi tiết

Tam giác ABC có ba đường cao là AM, BN, CP. Gọi H là giao điểm của ba đường cao trên thì H là trực tâm của tam giác ABC.

Tính chất:

- Trong tam giác đều, trọng tâm, trực tâm, điểm cách đều ba cạnh, điểm nằm trong tam giác và cách đều ba cạnh là bốn điểm trùng nhau.

Trực tâm của tam giác là gì ? Định nghĩa, tính chất trực tâm tam giác chi tiết

Ví dụ: Cho tam giác ABC cân tại A, đường trung tuyến AM và đường cao BK. Gọi H là giao điểm của AM và BK. Chứng minh rằng CH vuông góc với AB.

Hướng dẫn:

Trực tâm của tam giác là gì ? Định nghĩa, tính chất trực tâm tam giác chi tiết

Vì tam giác ABC cân tại A nên đường trung tuyến AM cũng là đường cao của tam giác ABC.

Ta có H là giao điểm của hai đường cao AM và BK nên H là trực tâm của tam giác ABC

Suy ra CH là đường cao của tam giác ABC

Vậy CH vuông góc với AB.

Bài tập vận dụng (có đáp án)

1. Bài tập trắc nghiệm

Câu 1. Cho đoạn thẳng AB và điểm M nằm giữa A và B (MA < MB). Vẽ tia Mx vuông góc với AB, trên đó lấy hai điểm C và D sao cho MA = MC, MD = MB.
Tia AC cắt BD ở E. Tính số đo góc \widehat {AEB}

A. 300

B. 450

C. 600

D. 900

Đáp án: D

Câu 2. Cho ΔABC cân tại A, hai đường cao BD và CE cắt nhau tại I. Tia AI cắt BC tại M. Khi đó ΔMED là tam giác gì?

A. Tam giác cân

B. Tam giác vuông cân

C. Tam giác vuông

D. Tam giác đều.

Đáp án: A

Câu 3. Cho ΔABC vuông tại A, trên cạnh AC lấy các điểm D, E sao cho \widehat {ABD} = \widehat {DBE} = \widehat {EBC}. Trên tia đối của tia DB lấy điểm F sao cho DF = BC. Tam giác CDF là tam giác gì?

A. Tam giác cân tại F

B. Tam giác vuông tại D

C. Tam giác cân tại D

D. Tam giác cân tại C

Đáp án: A

Câu 4: Cho ΔABC, hai đường cao BD và CE. Gọi M là trung điểm của BC. Em hãy chọn câu sai:

A. BM = MC

B. ME = MD

C. DM = MB

D. M không thuộc đường trung trực của DE

Vì M là trung điểm của BC (gt) suy ra BM = MC (tính chất trung điểm), loại đáp án A.

Xét ΔBCE có M là trung điểm của BC (gt) suy ra EM là trung tuyến

⇒ EM = BC/2 (1) (trong tam giác vuông đường trung tuyến ứng cới cạnh huyền bằng nửa cạnh ấy)

Xét ΔBCD có M là trung điểm của BC (gt) suy ra DM là trung tuyến

⇒ DM = MB = BC/2 (2) (trong tam giác vuông đường trung tuyến ứng cới cạnh huyền bằng nửa cạnh ấy) nên loại đáp án C

Từ (1) và (2) ⇒ EM = DM ⇒ M thuộc đường trung trực của DE. Loại đáp án B, chọn đáp án D

Chọn đáp án D

Câu 5: Cho ΔABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng

A. ΔABO = ΔCOE

B. ΔBOA = ΔCOE

C. ΔAOB = ΔCOE

D. ΔABO = ΔCEO


Xét tam giác ΔAOB và ΔCOE có

+ OA = OC (vì O thuộc đường trung trực của AC )

+ OB = OE (vì O thuộc đường trung trực của BE )

+ AB = CE (giả thiết)

Do đó ΔAOB = ΔCOE (c-c-c)

Chọn đáp án C

2. Bài tập tự luận

Bài 1. Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác.

GIẢI

+ Xét ΔABC vuông tại A

AB ⏊AC ⇒ AB là đường cao ứng với cạnh AC và AC là đường cao ứng với cạnh AB

hay AB, AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A

⇒ A là trực tâm của tam giác vuông ABC.

Vậy: trực tâm của tam giác vuông trùng với đỉnh góc vuông

+ Xét ΔABC tù có góc A tù, các đường cao CE, BF (E thuộc AB, F thuộc AC), trực tâm H.

+ Giả sử E nằm giữa A và B, khi đó

\begin{aligned}
&\widehat{\mathrm{CAE}} \equiv \widehat{\mathrm{CAB}} \text { là góc tù. }\\
&\text { Trong } \triangle \mathrm{ACE} \text { có }\\
&\widehat{\mathrm{CAE}}+\widehat{\mathrm{ACE}}+\widehat{\mathrm{CEA}}>90^{\circ}+\widehat{\mathrm{ACE}}+90^{\circ}\\
&=180^{\circ}+\widehat{\mathrm{ACE}}>180^{\circ}
\end{aligned}

Vậy E nằm ngoài A và B

⇒ tia CE nằm ngoài tia CA và tia CB ⇒ tia CE nằm bên ngoài ΔABC.

+ Tương tự ta có tia BF nằm bên ngoài ΔABC.

+ Trực tâm H là giao của BF và CE ⇒ H nằm bên ngoài ΔABC.

Vậy : trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Bài 2: Cho hình vẽ

a) Chứng minh NS ⊥ LM

b) Khi góc LNP = 50o, hãy tính góc MSP và góc PSQ.

GIẢI

a) Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

b)

+ Ta có : trong tam giác vuông, hai góc nhọn phụ nhau nên :

ΔNMQ vuông tại Q có:

\begin{aligned}
&\mathrm{LNP}+\widehat{\mathrm{QMN}}=90^{\circ} \Rightarrow \widehat{\mathrm{LNP}}=90^{\circ}-\widehat{\mathrm{QMN}}\\
&\Delta \text { MPS vuông tại } \mathrm{P} \text { có }\\
&\widehat{\mathrm{QMN}}+\overrightarrow{\mathrm{MSP}}=90^{\circ} \Rightarrow \widehat{\mathrm{MSP}}=90^{\circ}-\widehat{\mathrm{QMP}}\\
&\Rightarrow \widehat{\mathrm{LNP}}=\widehat{\mathrm{MSP}} . \text { Mà } \widehat{\mathrm{LNP}}=50^{\circ}(\mathrm{gt})\\
&\Rightarrow \widehat{\mathrm{MSP}}=50^{\circ}\\
&+\overline{\mathrm{MSP}}+\mathrm{PSQ}=180^{\circ} \text 
&\Rightarrow \widehat{\mathrm{PSQ}}=180^{\circ}-\overline{\mathrm{MSP}}=180^{0}-50^{0}=130^{\circ}
\end{aligned}

Bài 3: Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K).

Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác với điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N.

Chứng minh KN ⊥ IM.

GIẢI 

Vẽ hình minh họa:

Trong một tam giác, ba đường cao đồng quy tại một điểm là trực tâm của tam giác đó.

l ⊥ d tại J, và M, J ∈ l ⇒ MJ ⟘ IK ⇒ MJ là đường cao của ΔMKI.

N nằm trên đường thẳng qua I và vuông góc với MK ⇒ IN ⟘ MK ⇒ IN là đường cao của ΔMKI.

IN và MJ cắt nhau tại N .

Theo tính chất ba đường cao của ta giác ⇒ N là trực tâm của ΔMKI.

⇒ KN cũng là đường cao của ΔMKI ⇒ KN ⟘ MI.

Vậy KN ⏊ IM

Bài 4: Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Gợi ý đáp án 

+ Xét ΔABC vuông tại A

AB ⏊AC ⇒ AB là đường cao ứng với cạnh AC và AC là đường cao ứng với cạnh AB

hay AB, AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A

⇒ A là trực tâm của tam giác vuông ABC.

Vậy: trực tâm của tam giác vuông trùng với đỉnh góc vuông

+ Xét ΔABC tù có góc A tù, các đường cao CE, BF (E thuộc AB, F thuộc AC), trực tâm H.

+ Giả sử E nằm giữa A và B, khi đó

\begin{aligned}
&\widehat{\mathrm{CAE}} \equiv \widehat{\mathrm{CAB}} \text { là góc tù. }\\
&\text { Trong } \triangle \mathrm{ACE} \text { có }\\
&\widehat{\mathrm{CAE}}+\widehat{\mathrm{ACE}}+\widehat{\mathrm{CEA}}>90^{\circ}+\widehat{\mathrm{ACE}}+90^{\circ}\\
&=180^{\circ}+\widehat{\mathrm{ACE}}>180^{\circ}
\end{aligned}

Vậy E nằm ngoài A và B

⇒ tia CE nằm ngoài tia CA và tia CB ⇒ tia CE nằm bên ngoài ΔABC.

+ Tương tự ta có tia BF nằm bên ngoài ΔABC.

+ Trực tâm H là giao của BF và CE ⇒ H nằm bên ngoài ΔABC.

Vậy : trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Bài 5: Cho hình vẽ

a) Chứng minh NS ⊥ LM

b) Khi góc LNP = 50o, hãy tính góc MSP và góc PSQ.

Gợi ý đáp án

a) Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

b)

+ Ta có : trong tam giác vuông, hai góc nhọn phụ nhau nên :

ΔNMQ vuông tại Q có:

\begin{aligned}
&\mathrm{LNP}+\widehat{\mathrm{QMN}}=90^{\circ} \Rightarrow \widehat{\mathrm{LNP}}=90^{\circ}-\widehat{\mathrm{QMN}}\\
&\Delta \text { MPS vuông tại } \mathrm{P} \text { có }\\
&\widehat{\mathrm{QMN}}+\overrightarrow{\mathrm{MSP}}=90^{\circ} \Rightarrow \widehat{\mathrm{MSP}}=90^{\circ}-\widehat{\mathrm{QMP}}\\
&\Rightarrow \widehat{\mathrm{LNP}}=\widehat{\mathrm{MSP}} . \text { Mà } \widehat{\mathrm{LNP}}=50^{\circ}(\mathrm{gt})\\
&\Rightarrow \widehat{\mathrm{MSP}}=50^{\circ}\\
&+\overline{\mathrm{MSP}}+\mathrm{PSQ}=180^{\circ} \text 
&\Rightarrow \widehat{\mathrm{PSQ}}=180^{\circ}-\overline{\mathrm{MSP}}=180^{0}-50^{0}=130^{\circ}
\end{aligned}

Bài 6: Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K).

Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác với điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N.

Chứng minh KN ⊥ IM.

Gợi ý đáp án

Trong một tam giác, ba đường cao đồng quy tại một điểm là trực tâm của tam giác đó.

l ⊥ d tại J, và M, J ∈ l ⇒ MJ ⟘ IK ⇒ MJ là đường cao của ΔMKI.

N nằm trên đường thẳng qua I và vuông góc với MK ⇒ IN ⟘ MK ⇒ IN là đường cao của ΔMKI.

IN và MJ cắt nhau tại N .

Theo tính chất ba đường cao của ta giác ⇒ N là trực tâm của ΔMKI.

⇒ KN cũng là đường cao của ΔMKI ⇒ KN ⟘ MI.

Vậy KN ⏊ IM

Bài 7: Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.

a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.

b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC.

Gọi D, E, F là chân các đường vuông góc kẻ từ A, B, C của ΔABC.

⇒ AD ⟘ BC, BE ⟘ AC, CF ⟘ AB.

Gợi ý đáp án

Vẽ hình minh họa

a) ΔHBC có :

AD ⊥ BC nên AD là đường cao từ H đến BC.

BA ⊥ HC tại F nên BA là đường cao từ B đến HC

CA ⊥ BH tại E nên CA là đường cao từ C đến HB.

AD, BA, CA cắt nhau tại A nên A là trực tâm của ΔHCB.

b) Tương tự :

+ Trực tâm của ΔHAB là C (C là giao điểm của ba đường cao : CF, AC, BC)

+ Trực tâm của ΔHAC là B (B là giao điểm của ba đường cao : BE, AB, CB)

Bài 8: Cho tam giác nhọn ABC có ba đường cao AD, BE, CF. Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.

Gợi ý đáp án:

Bài 4

BE là đường cao của ∆ ABC \Rightarrow ∆ ABE vuông tại E.

CF là đường cao của ∆ ABC \Rightarrow ∆ AFC vuông tại F.

AD là đường cao của ∆ ABC \Rightarrow ∆ ADC vuông tại D.

+ Xét ∆ ABE vuông tại E và ∆ AFC vuông tại F có:

BE = CF

\widehat{EAF} chung

\Rightarrow  ∆ ABE = ∆ AFC (góc nhọn và một cạnh góc vuông).

\Rightarrow  AB = AC (1)

+ Xét ∆CDA vuông tại D và ∆ AFC vuông tại F có:

AC chung

AD = CF

\Rightarrow  ∆CDA = ∆AFC (cạnh huyền và một cạnh góc vuông).

\Rightarrow  \widehat{CAF}= \widehat{ACD}

\Rightarrow ∆ ABC cân tại B

=> AB = BC (2)

Từ (1), (2) ta có: AB = AC = BC

\Rightarrow ∆ ABC đều.

Bài 9: Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh rằng:

a) DE vuông góc với BC.

b) BE vuông góc với DC.

Gợi ý đáp án:

Bài 3

a) Gọi F là giao điểm của DE và BC

+ AD = AE => ∆ADE cân tại A

∆ABC vuông cân tại A => BA ⊥ AC hay EA ⊥ AD

=> ∆ ADE vuông cân tại A

=> \widehat{AED} = \widehat{ADE} = 45°

+ ∆ ABC vuông cân tại A

=> \widehat{ABC} = \widehat{ACB} = 45°

+ Xét ∆EFC có: \widehat{FEC} + \widehat{FCE} + \widehat{EFC} = 180°

=>  45° + 45° + \widehat{EFC} = 180°

=> \widehat{EFC} = 180° - 90° = 90°

=> EF ⊥ BC hay DE ⊥ BC.

b) Xét tam giác BCD có: CA ⊥ BD => CA là đường cao của ∆ BCD

DE ⊥ BC => DE là đường cao của ∆ BCD

Mà DE giao với CA tại E

=> E là trực tâm của ∆ BCD

=> BE ⊥ CD.

Bài 10: Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H. Chứng minh rằng MH vuông góc với BC.

Gợi ý đáp án:

Bài 2

Gọi MH giao với BC tại điểm I.

+ Xét ∆MBH và ∆CBH có:

MB = MC

\widehat{MBH} = \widehat{CBH}

BH chung

=> ∆MBH = ∆CBH (c.g.c)

=> \widehat{BMH} = \widehat{BCH}

+ Xét tam giác ABC vuông tại A có: \widehat{ABC} + \widehat{ACB} = 90^{o}

+ Ta có: \widehat{BMI} + \widehat{ABC} =  \widehat{ACB} + \widehat{ABC} =  90^{o}

+ Xét tam giác BMI có: \widehat{BMI} + \widehat{ABC} = 90^{o}

=>  \widehat{BIM} =  90^{o}.

=> MI ⊥ BC hay MH vuông góc với BC.

Bài tập tự luyện

Bài 1: Cho tam giác ABC không vuông. Gọi H là trực tâm của nó. Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ta trực tâm của tam giác đó.

Bài 2: Cho đường tròn (O, R) , gọi BC là dây cung cố định của đường tròn và A là một điểm di động trên đường tròn. Tìm tập hợp trực tâm H của tam giác ABC.

Bài 3: Cho △ABC có các đường cao AD;BE;CF cắt nhau tại H. I; J lần lượt là trung điểm của AH và BC.

a) Chứng minh: IJ ⊥ EF

b) Chứng minh: IE ⊥ JE

Bài 4: Cho △ABC có các đường cao AD;BE;CF cắt nhau tại H. I; J lần lượt là trung điểm của AH và BC.

a) Chứng minh: JT⊥EFJT⊥EF

b) Chứng minh: IE⊥JEIE⊥JE

c) Chứng minh: DA là tia phân giác của góc EDF.

d) Gọi P;Q là hai điểm đối xứng của D qua AB và AC

Chứng minh: P;F;E;Q thẳng hàng.

Bài 5: Cho tam giác ABC với trực tâm H. Chứng minh rằng các điểm đối xứng với H qua các đường thẳng chứa các cạnh hay trung điểm của các cạnh nằm trên đường tròn (ABC).

Bài 6: Cho tam giác ABC với các đường cao AD, BE, CF. Trực tâm H.DF cắt BH tại M, DE cắt CH tại N. chứng minh đường thẳng đi qua A và vuông góc với MN đi qua tâm ngoại tiếp của tam giác HBC.

Bài 7: Cho tứ giác lồi ABCD có 3 góc ở các đỉnh A, B và C bằng nhau. Gọi H và O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng O, H, D thẳng hàng.

Xem thêm các dạng bài tập Toán đầy đủ và hay khác:

70 Bài tập về Sự đồng quy của ba đường trung tuyến trong một tam giác (có đáp án năm 2024)

70 Bài tập về Sự đồng quy của ba đường phân giác trong một tam giác (có đáp án năm 2024)

70 Bài tập về Sự đồng quy của ba đường trung trực trong một tam giác (có đáp án năm 2024)

70 Bài tập về Sự đồng quy của ba đường cao trong một tam giác (có đáp án năm 2024)

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!