Bài tập tìm a để hệ phương trình có nghiệm duy nhất
1. Phương pháp giải
+ Hệ phương trình bậc nhất hai ẩn có nghiệm duy nhất khi với các hệ số a, b, a’, b’ khác 0 thì
Phương pháp:
Bước 1: Tìm điều kiện của m để hệ có nghiệm duy nhất sau đó giải hệ phương trình tìm nghiệm (x;y) theo tham số m.
Bước 2: Thế x và y vừa tìm được vào biểu thức điều kiện, sau đó giải tìm m.
Bước 3: Kết luận.
2. Ví dụ minh họa
Ví dụ 1: Cho hệ phương trình (m là tham số).
Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn x2 + y2 = 5.
Hướng dẫn:
Vì nên hệ phương trình luôn có nghiệm duy nhất (x;y).
Vậy m = 1 hoặc m = –2 thì phương trình có nghiệm thỏa mãn đề bài.
Ví dụ 2: Cho hệ phương trình (a là tham số).
Tìm a để hệ phương trình có nghiệm duy nhất là số nguyên.
Hướng dẫn:
Hệ phương trình luôn có nghiệm duy nhất (x;y) = (a;2).
Ví dụ 3: Cho hệ phương trình: (I) (m là tham số).
Tìm m đề hệ phương trình có nghiệm duy nhất sao cho 2x – 3y = 1.
Hướng dẫn:
3. Bài tập vận dụng
Câu 1: Tìm số nguyên m để hệ phương trình: . (m là tham số), có nghiệm (x;y) thỏa mãn x > 0, y < 0.
A. m ∈ Z
B. m ∈ {-3;-2;-1;0}
C. vô số.
D. không có
Lời giải:
hệ phương trình có nghiệm duy nhất:
vậy m ∈ {-3;-2;-1;0} thì hệ thỏa mãn x > 0, y < 0.
Chọn đáp án B.
Câu 2: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x < 0, y > 0.
A. m > 0
B. m < 0
C. m < 1
D. m > 1
Lời giải:
• 1 – m2 < 0 ⇒ (1 – m)(1 + m) < 0 ⇒ m < –1 hoặc m > 1.(*)
• 2m > 0 ⇒ m > 0.(**)
Kết hợp điều kiện hai trương hợp trên, suy ra m > 1.
Vậy m > 1 thì thỏa mãn x < 0, y> 0.
Chọn đáp án D.
Câu 3: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x < 1.
A. m > 0
B. với mọi m khác 0
C. không có giá trị của m
D. m < 1
Lời giải:
Vậy với mọi m khác 0 thì thỏa mãn điều kiện đề bài: x < 1.
Chọn đáp án B.
Sử dụng hệ sau trả lời câu 4, câu 5.
Cho hệ phương trình: .(m là tham số).
Câu 4: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho x – 1 > 0. Khẳng định nào sau đây là đúng ?
A. với mọi m thì hệ có nghiệm duy nhất.
B. với m > 2 thì hệ có nghiệm thỏa mãn x – 1 > 0.
C. với m > –2 thì hệ có nghiệm thỏa mãn x – 1 > 0.
D. Cả A, B, C đều sai.
Lời giải:
Để hệ phương trình có nghiệm duy nhất .
Vậy m > – 4 thì thỏa mãn điều kiện x – 1 > 0.
Chọn đáp án D.
Câu 5: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho . Khẳng định nào sau đây là đúng ?
A. với m = 0 hoặc m = 1 thì hệ thỏa mãn điều kiện bài toán.
B. với m = 0 thì hệ thỏa mãn điều kiện bài toán.
C. với m = 1 thì hệ thỏa mãn điều kiện bài toán.
D. Cả A, B, C đều đúng.
Lời giải:
Chọn đáp án A.
Sử dụng hệ sau trả lời câu 6.
Cho hệ phương trình: .(m là tham số).
Câu 6: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho 3x – y = 5.
A. m = 2,
B. m = – 2
C. m = 0,5
D. m = - 0,5
Lời giải:
Để hệ phương trình có nghiệm duy nhất:
Vậy với m = ½ thỏa mãn điều kiện đề bài.
Chọn đáp án C.
Câu 7: Cho hệ phương trình: .(m là tham số).
Với giá trị nào của m để hệ có nghiệm duy nhất sao cho x2 – 2y2 = –2.
A. m = 0
B. m = 2
C. m = 0 hoặc m = –2
D. m = 0 hoặc m = 2
Lời giải:
Trừ vế theo vế của pt (1) với pt (2) ta được: 3y = 3m – 3 ⇔ y = m - 1
Thế y = m - 1 vào pt: x – 2y = 2 ⇔ x – 2(m – 1) = 2 ⇔ x = 2m
Vậy hệ phương trình có nghiệm là: x = 2m; y = m – 1
Theo đề bài ta có: x2 – 2y2 = –2 ⇒ (2m)2 – 2 (m – 1)2 = –2
⇔ 4m2 – 2m2 + 4m – 2 = –2 ⇔ m2 + 2m = 0
Vậy với m = 0 hoặc m = –2 thì hệ thỏa mãn điều kiện: x2 – 2y2 = –2.
Chọn đáp án C.
Câu 8: Cho hệ phương trình: . (m là tham số), có nghiệm (x;y). Với giá trị nào của m để A = xy + x – 1 đạt giá trị lớn nhất.
A. m = 1
B. m = 2
C. m = –1
D. m = 3
Lời giải:
Trừ vế theo vế của pt (1) với pt (2) ta được: 2x = 2m + 4 ⇔ x = m + 2
Thế x = m + 2 vào pt: x + y = 5 ⇔ m + 2 + y = 5 ⇔ y = 3 – m
Vậy hệ phương trình có nghiệm là: x = m + 2; y = 3 – m
Theo đề bài ta có:
A = xy + x – 1
= (m + 2)(3 – m) + m + 2 – 1
= – m2 + 2m – 1 + 8
= 8 – (m – 1)2 8
Vậy Amax = 8 ⇔ m = 1
Vậy với m = 1 thì A đạt giá trị lớn nhất.
Chọn đáp án A.
Câu 9: Cho hệ phương trình: . (m là tham số), có nghiệm (x;y). Tìm m nguyên để T = y/x nguyên.
A. m = 1
B. m = –2 hoặc m = 0
C. m = -2 và m = 1
D. m = 3
Lời giải:
Để T nguyên thì (m + 1) là ước của 1.⇒ (m + 1)
• m + 1 = –1 ⇒ m = –2.
• m + 1 = 1 ⇒ m = 0.
Vậy với m = –2 hoặc m = 0 thì T nguyên.
Chọn đáp án B.
Câu 10: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x = y + 1.
A. m = 0
B. m = 1
C. m = 0 hoặc m = –1
D. m = 0 hoặc m = 1
Lời giải:
Vậy với m = 0 hoặc m = –1 thỏa mãn điều kiện đề bài.
Chọn đáp án C.
Câu 11: Tìm m để hệ phương trình 3x - 2y = m + 3 và (m - 5)x + 3y = 6 có nghiệm duy nhất
Lời giải:
Ta có
Để hệ phương trình có nghiệm duy nhất
Vậy với thì hệ phương trình có nghiệm duy nhất
Câu 12: Tìm m để hệ phương trình (m + 2)x + (m+2)y = 3 và x + 3y = 4 có nghiệm duy nhất
Lời giải:
Ta có
Để hệ phương trình có nghiệm duy nhất
Vậy với thì hệ phương trình có nghiệm duy nhất
Xem thêm các dạng bài tập Toán liên quan hay khác:
20 bài tập Cách giải hệ phương trình đối xứng hai ẩn (2024) cực hay, có đáp án
30 Bài tập Cách giải hệ phương trình bậc nhất hai ẩn chứa tham số (2024) cực hay, có đáp án
20 Bài tập Hệ phương trình có chứa tham số và cách giải bài tập (2024) hay, chi tiết
Cách giải hệ phương trình đặc biệt, nâng cao cực hay 2024
40 Bài tập Phương trình quy về phương trình bậc nhất, bậc hai (2024) cực hay, có đáp án