40 Bài tập Phương trình quy về phương trình bậc nhất, bậc hai (2024) cực hay, có đáp án

Bài viết giới thiệu về Phương trình quy về phương trình bậc nhất, bậc hai hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm và biết cách làm dạng phương trình quy về phương trình bậc nhất, bậc hai. Mời bạn đọc tham khảo:

Các dạng phương trình quy về phương trình bậc hai

ÔN TẬP VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

1. Phương trình bậc nhất

Cách giải và biện luận phương trình dạng ax + b = 0 được tóm tắt trong bảng sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn.

2. Phương trình bậc hai

Cách giải và công thức nghiệm của phương trình bậc hai được tóm tắt trong bảng sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Định lí Vi–ét

Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì

x1 + x2 = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án , x1x2 = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Ngược lại, nếu hai số u và v có tổng u + v = S và tích uv = P thì u và v là các nghiệm của phương trình

x2 – Sx + P = 0.

PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

Có nhiều phương trình khi giải có thể biến đổi về phương trình bậc nhất hoặc bậc hai.

Sau đây ta xét hai trong các dạng phương trình đó.

1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối

Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối ta có thể dùng định nghĩa của giá trị tuyệt đối hoặc bình phương hai vế để khử dấu giá trị tuyệt đối.

Ví dụ 1. Giải phương trình |x – 3| = 2x + 1. (3)

Hướng dẫn giải

Cách 1

a) Nếu x ≥ 3 thì phương trình (3) trở thành x – 3 = 2x + 1. Từ đó x = –4.

Giá trị x = –4 không thỏa mãn điều kiện x ≥ 3 nên bị loại.

b) Nếu x < 3 thì phương trình (3) trở thành –x + 3 = 2x + 1. Từ đó x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Giá trị này thỏa mãn điều kiện x < 3 nên là nghiệm.

Kết luận. Vậy nghiệm của phương trình là x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cách 2. Bình phương hai vế của phương trình (3) ta đưa tới phương trình hệ quả

(3) => (x – 3)2 = (2x + 1)2

=> x2 – 6x + 9 = 4x2 + 4x + 1

=> 3x2 + 10x – 8 = 0.

Phương trình cuối có hai nghiệm là x = –4 và x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Thử lại ta thấy phương trình (3) chỉ có nghiệm là x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Phương trình chứa ẩn dưới dấu căn

Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.

Ví dụ 2. Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = x – 2 (4).

Hướng dẫn giải

Điều kiện của phương trình (4) là x ≥ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bình phương hai vế của phương trình (4) ta đưa tới phương trình hệ quả

(4) => 2x – 3 = x2 – 4x + 4

=> x2 – 6x + 7 = 0.

Phương trình cuối có hai nghiệm là x = 3 + √2 và x = 3 – √2 . Cả hai giá trị này đều thỏa mãn điều kiện của phương trình (4), nhưng khi thay vào phương trình (4) thì giá trị x = 3 – √2 bị loại (vế trái dương còn vế phải âm), còn giá trị x= 3 + √2 là nghiệm (hai vế cùng bằng √2 + 1).

Kết luận. Vậy nghiệm của phương trình (4) là x= 3 + √2 .

BÀI TẬP VẬN DỤNG (CÓ ĐÁP ÁN)

Bài 1: Giải các phương trình:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ (x + 3)(x – 3) + 2.3 = 3x(1 – x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ x2 – 9 + 6 – 3x + 3x2 = 0

⇔ 4x2 – 3x – 3 = 0

Có a = 4; b = -3; c = -3 ⇒ Δ = (-3)2 – 4.4.(-3) = 57 > 0

Phương trình có hai nghiệm

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ 5; x ≠ 2.

Quy đồng và khử mẫu ta được :

(x + 2)(2 – x) + 3(2 – x)(x – 5) = 6(x – 5)

⇔ 4 – x2 + 6x – 3x2 – 30 + 15x = 6x – 30

⇔ 4 – x2 + 6x – 3x2 – 30 + 15x – 6x + 30 = 0

⇔ -4x2 + 15x + 4 = 0

Có a = -4; b = 15; c = 4 ⇒ Δ = 152 – 4.(-4).4 = 289 > 0

Phương trình có hai nghiệm phân biệt:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều thỏa mãn điều kiện.

Vậy phương trình có tập nghiệm Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ -1; x ≠ -2.

Quy đồng và khử mẫu ta được:

4.(x + 2) = -x2 – x + 2

⇔ 4x + 8 = -x2 – x + 2

⇔ 4x + 8 + x2 + x – 2 = 0

⇔ x2 + 5x + 6 = 0.

Có a = 1; b = 5; c = 6 ⇒ Δ = 52 – 4.1.6 = 1 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có nghiệm x2 = -3 thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm x = -3.

Bài 2: Giải các phương trình trùng phương:

a) x4 – 5x2 + 4 = 0;

b) 2x4 – 3x2 – 2 = 0;

c) 3x4 + 10x2 + 3 = 0

Lời giải

a) x4 – 5x2 + 4 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = ca=41 = 4

Cả và thỏa mãn t0

+ Với t = 1 ⇒ x2 = 1 ⇒ x = ±1

+ Với t = 4 ⇒ x2 = 4 ⇒ x = ±2

Vậy phương trình đã cho có tập nghiệm S=2;1;1;2

b) 2x4 – 3x2 – 2 = 0; (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 2t2 – 3t – 2 = 0 (2)

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒ Δ = (-3)2 - 4.2.(-2) = 25 > 0

⇒ Phương trình có hai nghiệm phân biệt

t1=3+252.2=2;t2=3252.2=12

Vì t0 nên chỉ có t = 2 thỏa mãn điều kiện

+ Với t = 2 ⇒ x2 = 2 ⇒ x = ±2

Vậy phương trình đã cho có tập nghiệm S=2;2

c) 3x4 + 10x2 + 3 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành: 3t2 + 10t + 3 = 0 (2)

Giải (2) : Có a = 3; b' = 5; c = 3

⇒ Δ’ = 52 – 3.3 = 16 > 0

⇒ Phương trình có hai nghiệm phân biệt

t1=5+163=13;t2=5163=3

Vì t0 nên cả đều t1;t2 không thỏa mãn.

Bài 3: Giải các phương trình:

a) (3x2 – 5x + 1)(x2 – 4) = 0;

b) (2x2 + x – 4)2 – (2x – 1)2 = 0.

Lời giải

a) (3x2 – 5x + 1)(x2 – 4) = 0

3x25x+1=0   (1)x24=0      (2)

+ Giải (1): 3x2 – 5x + 1 = 0

Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0

Phương trình có hai nghiệm phân biệt

x1=b+Δ2a=5+132.3=5+136

x2=bΔ2a=5132.3=5136

+ Giải (2): x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = ±2

Vậy phương trình ban đầu có tập nghiệm S=2;5136;2;5+136

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 – 2x + 1)(2x2 + x – 4 + 2x – 1) = 0

⇔ (2x2 – x – 3)(2x2 + 3x – 5) = 0

⇔ 2x2 – x – 3 = 0 (1)

hoặc 2x2 + 3x – 5 = 0 (2)

+ Giải (1): 2x2 – x – 3 = 0

Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -ca = 32.

+ Giải (2): 2x2 + 3x – 5 = 0

Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm x = 1 và x = ca = -52.

Vậy phương trình có tập nghiệm S = 52;1;1;32

Bài 4: Giải phương trình trùng phương:

a)9x410x2+1=0

b)5x4+2x216=10x2

c)0,3x4+1,8x2+1,5=0

d)2x2+1=1x24

Lời giải

a) 9x4 – 10x2 + 1 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 9t2 – 10t + 1 = 0 (2)

Giải (2):

Có a = 9; b = -10; c = 1

⇒ a + b + c = 0

⇒ Phương trình (2) có nghiệm t1 = 1; t2 = ca=19

Cả hai nghiệm đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = ±1

+ Với t = 19x=±19=±13.

Vậy phương trình có tập nghiệm S=1;13;13;1

b) 5x4 + 2x2 – 16 = 10 – x2

⇔ 5x4 + 2x2 – 16 – 10 + x2 = 0

⇔ 5x4 + 3x2 – 26 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 5t2 + 3t – 26 = 0 (2)

Giải (2) :

Có a = 5 ; b = 3 ; c = -26

⇒ Δ = 32 – 4.5.(-26) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt:

t1=3+5292.5=2;t2=35292.5=2610

Đối chiếu điều kiện t0 chỉ có t1 = 2 thỏa mãn

+ Với t = 2 ⇒ x2 = 2 ⇒ x = ±2

Vậy phương trình (1) có tập nghiệm S = 2;2

c) 0,3x4 + 1,8x2 + 1,5 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó, (1) trở thành : 0,3t2 + 1,8t + 1,5 = 0 (2)

Giải (2) :

Ta có: a = 0,3 ; b = 1,8 ; c = 1,5

⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm t1 = -1 và t2 = ca=1,50,3=5

Cả hai nghiệm đều không thỏa mãn điều kiện t0.

Vậy phương trình (1) vô nghiệm.

d) Điều kiện xác định: x ≠ 0.

2x2+1=1x24

2x4x2+x2x2=1x24x2x2

2x4 + x2 = 1 – 4x2

⇔ 2x4 + x2 + 4x2 – 1 = 0

⇔ 2x4 + 5x2 – 1 = 0 (1)

Đặt t = x2, điều kiện t > 0.

Khi đó (1) trở thành : 2t2 + 5t – 1 = 0 (2)

Giải (2) :

Có a = 2 ; b = 5 ; c = -1

⇒ Δ = 52 – 4.2.(-1) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

t1=5+334;t2=5334

Đối chiếu với điều kiện t > 0 thấy có nghiệm t1 thỏa mãn.

+ Với t = 5+334x2=5+334

x=±5+334=±5+332 (thỏa mãn)

Vậy phương trình có tập nghiệm S = ±5+332

Bài 5: Giải các phương trình:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

a) (x – 3)2 + (x + 4)2 = 23 – 3x

⇔ x2 – 6x + 9 + x2 + 8x + 16 = 23 – 3x

⇔ x2 – 6x + 9 + x2 + 8x + 16 + 3x – 23 = 0

⇔ 2x2 + 5x + 2 = 0

Có a = 2; b = 5; c = 2 ⇒ Δ = 52 – 4.2.2 = 9 > 0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x3 + 2x2 – (x – 3)2 = (x – 1)(x2 – 2)

⇔ x3 + 2x2 – (x2 – 6x + 9) = x3 – x2 – 2x + 2

⇔ x3 + 2x2 – x2 + 6x – 9 – x3 + x2 + 2x – 2 = 0

⇔ 2x2 + 8x – 11 = 0.

Có a = 2; b = 8; c = -11 ⇒ Δ’ = 42 – 2.(-11) = 38 > 0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) (x – 1)3 + 0,5x2 = x(x2 + 1,5)

⇔ x3 - 3x2 + 3x – 1 + 0,5x2 = x3 + 1,5x

⇔ x3 + 1,5x – x3 + 3x2 – 3x + 1 – 0,5x2 = 0

⇔ 2,5x2 – 1,5x + 1 = 0

Có a = 2,5; b = -1,5; c = 1

⇒ Δ = (-1,5)2 – 4.2,5.1 = -7,75 < 0

Vậy phương trình vô nghiệm.

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 2x(x – 7) – 6 = 3x – 2(x – 4)

⇔ 2x2 – 14x – 6 = 3x – 2x + 8

⇔ 2x2 – 14x – 6 – 3x + 2x – 8 = 0

⇔ 2x2 – 15x – 14 = 0.

Có a = 2; b = -15; c = -14

⇒ Δ = (-15)2 – 4.2.(-14) = 337 > 0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 14 = (x – 2)(x + 3)

⇔ 14 = x2 – 2x + 3x – 6

⇔ x2 + x – 20 = 0

Có a = 1; b = 1; c = -20

⇒ Δ = 12 – 4.1.(-20) = 81 > 0

Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình có tập nghiệm S = {-5; 4}.

f) Điều kiện: x≠-1;x≠4

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a= 1, b = -7, c = - 8

∆ = (-7)2 – 4.1. (- 8)= 81

=> Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kết hợp với diều kiện, nghiệm của phương trình đã cho là x = 8

Bài 6: Giải phương trình bằng cách đặt ẩn phụ:

a) 3x2+x22x2+x1=0

b) x24x+22+x24x4=0

c) xx=5x+7

d) xx+110.x+1x=3

Hướng dẫn:

a) Đặt t = x2 + x, ta có phương trình 3t2 - 2t - 1 = 0. Giải phương trình này, ta tìm được hai giá trị của t. Thay mỗi giá trị của t vừa tìm được vào đẳng thức t = x2 +x, ta được một phương trình của ẩn x. Giải mỗi phương trình này sẽ tìm được giá trị của x.

d) Đặt x+1x=t hoặc xx+1=t

Lời giải

a) 3x2+x22x2+x1=0

Đặt x2+x=t khi đó phương trình trở thành:

3t22t1=0

Ta có: a = 3; b = -2; c = -1

Nhận thấy a + b + c = 0

Phương trình có hai nghiệm phân biệt: 

t1=1;t2=ca=13

+) Với t = 1 x2+x=1

x2+x1=0

Ta có: a = 1; b = 1; c = -1

Δ=b24ac=124.1.1=5

Phương trình có hai nghiệm phân biệt:

x1=b+Δ2a=1+52;

x2=bΔ2a=152

+ Với t = 13x2+x=13

x2+x+13=0

Ta có: a = 1; b = 1; c = 13

Δ=124.1.13=13<0 vô nghiệm

Vậy phương trình đã cho có tập nghiệm S=152;1+52.

b) x24x+22+x24x4=0

 x24x+22+x24x+26=0

Đặt x24x+2=t khi đó phương trình trở thành 

t2 + t – 6 = 0 (2)

Ta có a = 1; b = 1; c = -6

⇒ Δ = 12 – 4.1.(-6) = 25 > 0

⇒ (2) có hai nghiệm phân biệt

t1=b+Δ2a=1+252=2

t2=bΔ2a=1252=3

+ Với t = 2 ⇒ x2 – 4x + 2 = 2

⇔ x2 – 4x = 0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3 ⇒ x2 – 4x + 2 = -3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5 ⇒ Δ’ = (-2)2 – 1.5 = -1 < 0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

c) Điều kiện: x0

xx=5x+7 (1)

Đặt x=t t0. Khi đó phương trình (1) trở thành:

t2t=5t+7(2)

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm t1 = -1; t2 = ca=71 = 7.

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có tập nghiệm S=49

d) Điều kiện: x0;x1

xx+110.x+1x=3 (1)

Đặt xx+1=t khi đó phương trình (1) trở thành:

t - 10.1t=3

t210=3t

t23t10=0(2)

Ta có: a = 1; b = -3; c = -10.

Δ=324.1.10=9+40=49>0

Phương trình (2) có hai nghiệm phân biệt

t1=b+Δ2a=3+492.1=5;

t2=bΔ2a=3492.1=2.

+) Với t = 5 xx+1=5

x=5x+1

x=5x+5

5xx=5

4x=5

x=54 (thỏa mãn)

+) Với t = -2 xx+1=2

x=2x+1

x=2x2

x+2x=2

3x=2

x=23 (thỏa mãn)

Vậy phương trình đã cho có tập nghiệm S = 54;23

Bài 7: Giải phương trình bằng cách đưa về phương trình tích:

a) 3x27x10 2x2+15x+53=0

b) x3+3x22x6=0

c) x210,6x+1=0,6x2+x

d) x2+2x52=x2x+52

Lời giải

a) 3x27x102x2+15x+53=0

3x27x10=0                       (1)2x2+15x+53=0     (2)

+) Giải (1): 3x27x10=0

Ta có: a = 3; b = -7; c = -10

Nhận thấy a – b + c = 0

Do đó phương trình (1) có nghiệm x1=1;x2=ca=103

+) Giải (2): 2x2+15x+53=0

Ta có: a = 2; b = 15; c = 53

Nhận thấy a + b + c = 0 

Do đó phương trình (2) có nghiệm x1=1;x2=ca=532

Vậy phương trình có tập nghiệm là S = 1;532;1;103.

b) x3+3x22x6=0

x2x+32x+3=0

x+3x22=0

x+3x2x+2=0

x+3=0x2=0x+2=0 x=3x=2x=2

Vậy phương trình có tập nghiệm là S = 3;2;2 .

c) x210,6x+1=0,6x2+x

x210,6x+1=x0,6x+1

x210,6x+1x0,6x+1=0

0,6x+1x21x=0

0,6x+1=0    (1)x2x1=0   (2)

+) Giải (1): 0,6x + 1 = 0

0,6x=1

x=(1):0,6=53

Phương trình (1) có nghiệm x = 53

+) Giải (2): x2x1=0

Ta có: a = 1; b = -1; c = -1

Δ=124.1.1=1+4=5>0

Phương trình hai có hai nghiệm phân biệt:

x1=b+Δ2a=1+52 ;

x1=bΔ2a=152

Vậy tập nghiệm của phương trình là S = 53;152;1+52 .

d) x2+2x52=x2x+52

⇔ (x2 + 2x – 5)2 – (x2 – x + 5)2 = 0

⇔ [(x2 + 2x – 5) – (x2 – x + 5)].[(x2 + 2x – 5) + (x2 – x + 5)] = 0

x2+2x5x2+x5x2+2x5+x2x+5=0

⇔ (3x – 10)(2x2 + x ) = 0

⇔ (3x – 10).x.(2x + 1) = 0

x=03x10=02x+1=0

x=03x=102x=1

x=0x=103x=12

Vậy phương trình có tập nghiệm S=12;0;103

Xem thêm các dạng bài tập toán hay khác:

50 Bài tập Giải bài toán bằng cách lập phương trình (có đáp án năm 2023)

50 Bài tập Hệ thức Vi – ét và ứng dụng (có đáp án năm 2023)

50 Bài tập Phương trình bậc hai một ẩn (có đáp án năm 2023)

50 Bài tập Giải bài toán bằng cách lập hệ phương trình (có đáp án năm 2023)

50 Bài tập Giải hệ phương trình bằng phương pháp cộng đại số (có đáp án năm 2023)

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!