20 Bài tập Cách tính giới hạn của dãy số (2024) cực hay, có đáp án

Bài viết Cách tính giới hạn của dãy số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính giới hạn của dãy số. Mời bạn đọc tham khảo:

Cách tính giới hạn của dãy số cực hay

Lý thuyết

1. Dãy số có giới hạn 0

Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu với mỗi số dương nhỏ tùy ý cho trước, mọi số hạng của dãy số kể từ một số hạng nào đó trở đi, |un| nhỏ hơn số dương đó.

Kí hiệu: limnun=0 hay lim un = 0 hay un0 khi n+.

2. Dãy số có giới hạn hữu hạn

Ta nói rằng dãy số (un) có giới hạn là số thực L nếu lim (un – L) = 0

Kí hiệu: limnun=L hay lim un = L hay unL khi n+.

3. Dãy số có giới hạn vô cực

Dãy số (un) có giới hạn là + khi n+, nếu un có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.

Ký hiệu: limun=+ hoặc un+ khin+ 

Dãy số (un) có giới hạn là - khi n+, nếu limun=+

Ký hiệu: limun= hoặc un khin+ 

4. Một vài giới hạn đặc biệt

limun=0limun=0

lim1n=0;  lim1nk=0,k>0,k*

limnk=+,k>0,k*

limqn=0 khi   q<1+ khi   q>1

5. Định lý về giới hạn hữu hạn

* Nếu lim un = a và lim vn = b và c là hằng số. Khi đó ta có :

lim(un + vn) = a + b

lim(un - vn) = a - b

lim(un vn) = a.b

limunvn=ab,b0

lim(cun ) = c.a

lim|un | = |a|

limun3=a3

Nếu un0 với mọi n thì a0 và limun=a.

Định lí kẹp: Cho ba dãy số (vn); (un) và (wn):

Nếu vnunwn,  nN*limvn=limwn=a thì lim un = a.

Hệ quả: Cho hai dãy số (un) và (vn):

Nếu unvn,  nN*limvn=0 thì lim un = 0.

6. Một vài quy tắc tìm giới hạn vô cực

* Quy tắc tìm giới hạn tích lim (unvn)

Nếu limun=L0,   limvn=+(hay). Khi đó: lim (unvn)

lim un = L

lim vn

lim (unvn)

+

+ +

+

- -

-

+ -

-

- +

* Quy tắc tìm giới hạn thương

lim un = L

lim vn

Dấu của vn

limunvn

L

±

Tùy ý

0

L > 0

0

+

+

0

-

-

L < 0

0

+

-

0

-

+

7. Tổng cấp số nhân lùi vô hạn

Xét cấp số nhân vô hạn u1; u1q; u1q2; … u1qn; … có công bội |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là: S=u1+u1q+u1q2+....=u11q   q<1

Phương pháp giải

- Ta quan sát, phân tích những đặc điểm của dãy số đề bài cho, từ đó rút ra công thu gọn cho tổng đó (có thể dùng công thức tính tổng của cấp số cộng hoặc cấp số nhân) hoặc biến đổi đại số để giảm bớt những hạng tử trong tổng,…

- Dùng các quy tắc tính giới hạn của dãy số để tính giới hạn của tổng đã cho sau khi đã thu gọn.

 Ví dụ minh họa

Ví dụ 1: Cho dãy số (un) với Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Tính lim un

Hướng dẫn:

un là tổng n số hạng đầu tiên của một cấp số nhân có u1 = 1/2 và q = (-1)/2.

Do đó

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 2: Tính lim Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 3: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 4: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 5: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 6: Cho dãy số (un). Biết Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với mọi n ≥ 1. Tìm Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ví dụ 7: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Khi đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài tập vận dụng (có đáp án)

Bài 1: Tìm giá trị đúng của Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. √2 + 1.             B. 2.             C. 2√2.             D. 1/2.

Lời giải:

Đáp án: C

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 1 và công bội là 1/2. Khi đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy S = 2√2.

Chọn đáp án C.

Bài 2: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 0            B. 1/3            C. 2/3            D. 1

Lời giải:

Đáp án: B

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B.

Bài 3: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 0             B. 1            C. 3/2              D. Không có giới hạn

Lời giải:

Đáp án: B

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Khi đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 4: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1            B. 0            C. 2/3            D. 2

Lời giải:

Đáp án: D

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Khi đó

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chọn đáp án D.

Bài 5: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1/2            B. 1            C. 0            D. 2/3

Lời giải:

Đáp án: A

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 6: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 11/18            B. 2            C. 1            D. 3/2

Lời giải:

Đáp án: A

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1            B. 1/2            C. 1/4            D. 3/2

Lời giải:

Đáp án: A

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 8: Cho dãy số (un) với Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Mệnh đề nào sau đây là mệnh đề đúng?

A. lim⁡un = 0

B. lim⁡un = 1/2

C. lim⁡un = 1

D. Dãy số (un) không có giới hạn khi n → +∞

Lời giải:

Đáp án: B

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B

Bài 9: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

Chọn A.

Từ thức là tổng của n số hạng đầu tiên của cấp số cộng (un) với n = 1, un = 4n-3 và công bội d = 4

Do đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tương tự ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 10: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

+∞            B. 3            C. 3/2            D. 2/3

Lời giải:

Đáp án: A

Chọn A

Ta có từ thức là tổng n số hạng đầu tiên của cấp số nhân (un) với ui = 3 và q = 3

Do đó 3 + 32 + 33 + ⋯ + 3n = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Mẫu thức là tổng của n+1 số hạng đầu tiên của cấp số nhân (vn) với vn = 1 và q = 2.

Do đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập liên quan khác:

70 Bài tập về giới hạn của hàm số (có đáp án năm 2024)

30 Bài tập Tìm giới hạn của dãy số bằng định nghĩa (2024) cực hay, có đáp án

20 Bài tập Cách tính giới hạn của hàm số có chứa trị tuyệt đối (2024) cực hay, có đáp án chi tiết

20 Bài tập Cách tính giới hạn của dãy số có chứa căn thức (2024) cực hay, có đáp án chi tiết

500 Bài tập Toán 11 chương 4: Giới hạn (có đáp án năm 2024)

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!