Cách tính giới hạn của dãy số cực hay
Lý thuyết
1. Dãy số có giới hạn 0
Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu với mỗi số dương nhỏ tùy ý cho trước, mọi số hạng của dãy số kể từ một số hạng nào đó trở đi, |un| nhỏ hơn số dương đó.
Kí hiệu: hay lim un = 0 hay khi .
2. Dãy số có giới hạn hữu hạn
Ta nói rằng dãy số (un) có giới hạn là số thực L nếu lim (un – L) = 0
Kí hiệu: hay lim un = L hay khi .
3. Dãy số có giới hạn vô cực
Dãy số (un) có giới hạn là khi , nếu un có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.
Ký hiệu: hoặc
Dãy số (un) có giới hạn là khi , nếu
Ký hiệu: hoặc
4. Một vài giới hạn đặc biệt
5. Định lý về giới hạn hữu hạn
* Nếu lim un = a và lim vn = b và c là hằng số. Khi đó ta có :
lim(un + vn) = a + b
lim(un - vn) = a - b
lim(un vn) = a.b
lim(cun ) = c.a
lim|un | = |a|
Nếu với mọi n thì và .
* Định lí kẹp: Cho ba dãy số (vn); (un) và (wn):
Nếu thì lim un = a.
Hệ quả: Cho hai dãy số (un) và (vn):
Nếu thì lim un = 0.
6. Một vài quy tắc tìm giới hạn vô cực
* Quy tắc tìm giới hạn tích lim (unvn)
Nếu . Khi đó: lim (unvn)
lim un = L |
lim vn |
lim (unvn) |
+ |
||
+ |
||
- |
||
- |
* Quy tắc tìm giới hạn thương
lim un = L |
lim vn |
Dấu của vn |
|
L |
Tùy ý |
0 |
|
L > 0 |
0 |
+ |
|
0 |
- |
||
L < 0 |
0 |
+ |
|
0 |
- |
7. Tổng cấp số nhân lùi vô hạn
Xét cấp số nhân vô hạn u1; u1q; u1q2; … u1qn; … có công bội |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn là:
Phương pháp giải
- Ta quan sát, phân tích những đặc điểm của dãy số đề bài cho, từ đó rút ra công thu gọn cho tổng đó (có thể dùng công thức tính tổng của cấp số cộng hoặc cấp số nhân) hoặc biến đổi đại số để giảm bớt những hạng tử trong tổng,…
- Dùng các quy tắc tính giới hạn của dãy số để tính giới hạn của tổng đã cho sau khi đã thu gọn.
Ví dụ minh họa
Ví dụ 1: Cho dãy số (un) với . Tính lim un
Hướng dẫn:
un là tổng n số hạng đầu tiên của một cấp số nhân có u1 = 1/2 và q = (-1)/2.
Do đó
Ví dụ 2: Tính lim
Hướng dẫn:
Vậy
Ví dụ 3: Tính
Hướng dẫn:
Ta có
Mà
Vậy
Ví dụ 4: Tính
Hướng dẫn:
Ví dụ 5: Tính
Hướng dẫn:
Ví dụ 6: Cho dãy số (un). Biết với mọi n ≥ 1. Tìm
Hướng dẫn:
Ví dụ 7: Tính
Hướng dẫn:
Khi đó
Bài tập vận dụng (có đáp án)
Bài 1: Tìm giá trị đúng của
A. √2 + 1. B. 2. C. 2√2. D. 1/2.
Lời giải:
Đáp án: C
Ta có:
là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 1 và công bội là 1/2. Khi đó:
Vậy S = 2√2.
Chọn đáp án C.
Bài 2: Tính giới hạn:
A. 0 B. 1/3 C. 2/3 D. 1
Lời giải:
Đáp án: B
Ta có:
Đáp án B.
Bài 3: Tính giới hạn:
A. 0 B. 1 C. 3/2 D. Không có giới hạn
Lời giải:
Đáp án: B
Ta có:
Khi đó
Đáp án B
Bài 4: Tính giới hạn:
A. 1 B. 0 C. 2/3 D. 2
Lời giải:
Đáp án: D
Ta có:
Khi đó
Chọn đáp án D.
Bài 5: Tính giới hạn:
A. 1/2 B. 1 C. 0 D. 2/3
Lời giải:
Đáp án: A
Ta có:
Đáp án A
Bài 6: Tính giới hạn:
A. 11/18 B. 2 C. 1 D. 3/2
Lời giải:
Đáp án: A
Bài 7: Tính giới hạn:
A. 1 B. 1/2 C. 1/4 D. 3/2
Lời giải:
Đáp án: A
Ta có:
Đáp án A
Bài 8: Cho dãy số (un) với . Mệnh đề nào sau đây là mệnh đề đúng?
A. limun = 0
B. limun = 1/2
C. limun = 1
D. Dãy số (un) không có giới hạn khi n → +∞
Lời giải:
Đáp án: B
Ta có:
Do đó
Đáp án B
Bài 9: bằng:
Lời giải:
Đáp án: A
Chọn A.
Từ thức là tổng của n số hạng đầu tiên của cấp số cộng (un) với n = 1, un = 4n-3 và công bội d = 4
Do đó
Tương tự ta có
Vậy
Bài 10: bằng:
+∞ B. 3 C. 3/2 D. 2/3
Lời giải:
Đáp án: A
Chọn A
Ta có từ thức là tổng n số hạng đầu tiên của cấp số nhân (un) với ui = 3 và q = 3
Do đó 3 + 32 + 33 + ⋯ + 3n =
Mẫu thức là tổng của n+1 số hạng đầu tiên của cấp số nhân (vn) với vn = 1 và q = 2.
Do đó
Vậy
Xem thêm các dạng bài tập liên quan khác:
70 Bài tập về giới hạn của hàm số (có đáp án năm 2024)
30 Bài tập Tìm giới hạn của dãy số bằng định nghĩa (2024) cực hay, có đáp án
20 Bài tập Cách tính giới hạn của hàm số có chứa trị tuyệt đối (2024) cực hay, có đáp án chi tiết
20 Bài tập Cách tính giới hạn của dãy số có chứa căn thức (2024) cực hay, có đáp án chi tiết