Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng

Bài 7.33 trang 46 SBT Toán 10 Tập 2: Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng Δ: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 5.

Trả lời

Phương trình chính tắc của (P) có dạng y2 = 2px, trong đó p > 0.

Vì (P) có đường chuẩn là Δ: x + 4 = 0 ⇔ x = –4 ⇔ –p : 2 = –4 ⇔ p = 8

Vậy phương trình chính tắc của (P) là y2 = 16x.

Gọi M (x0; y0).

Vì M thuộc (P) nên ta có:

d(M, Δ) = MF = 5 với F là tiêu điểm của (P) và F(4; 0).

x0+412+02=5

⇔ |x0 + 4| = 5 (*)

TH1: x0 + 4 ≥ 0 hay x0 ≥ –4

 (*) ⇔  x0 + 4 = 5  ⇔ x0 = 1 (thỏa mãn)

TH2: x0 + 4 < 0 hay x0 < –4

 (*) ⇔  –x0 – 4 = 5  ⇔ x0 = –9 (thỏa mãn)

Với x0 = –9, thay vào phương trình của (P) ta được y02 = 16.(–9) = –144 < 0 (không thể tồn tại)

Với x0 = 1, thay vào phương trình của (P) ta được y02 = 16.1 = 16 ⇔ y = ±4

Vậy M(1; 4) hoặc M(1; –4).

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh vị và tổ hợp

Câu hỏi cùng chủ đề

Xem tất cả