Vẽ các đường parabol sau: y = x^2 – 3x + 2

Vẽ các đường parabol sau:

a) y = x2 – 3x + 2;

b) y = – 2x2 + 2x + 3;

c) y = x2 + 2x + 1;

d) y = – x2 + x – 1.

Trả lời

a) y = x2 – 3x + 2

Hệ số a = 1 > 0 nên parabol quay bề lõm lên trên.

Parabol y = x2 – 3x + 2 có:

- Tọa độ đỉnh I32;14;

- Trục đối xứng x=32;

- Giao điểm của đồ thị với trục Oy là A(0; 2).

- Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình x2 – 3x + 2 = 0, tức là x = 2 và x = 1 hay giao điểm với Ox là D(1; 0) và E(2; 0);

- Điểm đối xứng với điểm A qua trục đối xứng x=32 là B(3; 2).

Vẽ đường cong đi qua các điểm trên ta được parabol y = x2 – 3x + 2.

 

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

b) y = – 2x2 + 2x + 3

Hệ số a = – 2 < 0 nên parabol quay bề lõm xuống dưới.

Parabol y = – 2x2 + 2x + 3 có:

- Tọa độ đỉnh I12;72;

- Trục đối xứng x=12;

- Giao điểm của đồ thị với trục Oy là A(0; 3).

- Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – 2x2 + 2x + 3 = 0, tức là x = 1+72 và x = 172 hay giao với Ox là D172;0 và E1+72;0; 

- Điểm đối xứng với điểm A qua trục đối xứng x=12 là B(1; 3).

Vẽ đường cong đi qua các điểm trên ta được parabol y = – 2x2 + 2x + 3.

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

c) y = x2 + 2x + 1

Hệ số a = 1 > 0 nên parabol quay bề lõm lên trên.

Parabol y = x2 + 2x + 1 có:

- Tọa độ đỉnh I(– 1; 0)

- Trục đối xứng x = – 1;

- Giao điểm của đồ thị với trục Oy là A(0; 1).

- Điểm đối xứng với điểm A qua trục đối xứng x = – 1 là B(– 2; 1).

- Lấy điểm C(1; 4) thuộc parabol, điểm đối xứng với C qua trục đối xứng x = – 1 là D(– 3; 4).

Vẽ đường cong đi qua các điểm trên ta được parabol y = x2 + 2x + 1.

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

d) y = – x2 + x – 1

Hệ số a = – 1 < 0 nên parabol quay bề lõm xuống dưới.

Parabol y = – x2 + x – 1 có:

- Tọa độ đỉnh I12;34;

- Trục đối xứng x=12;

- Giao điểm của đồ thị với trục Oy là A(0; – 1).

- Điểm đối xứng với điểm A qua trục đối xứng x=12 là B(1; – 1).

- Lấy điểm C(2; – 3) thuộc parabol, điểm đối xứng với trục đối xứng x=12 là D(– 1; – 3).

Vẽ đường cong đi qua các điểm trên ta được parabol y = – x2 + x – 1.

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

Câu hỏi cùng chủ đề

Xem tất cả