Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời
29
29/07/2024
Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với t ∈ ℤ và 0 < t ≤ 365.
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)
Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?
Trả lời
Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:
\(3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 15\)
\( \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)
\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t - 80 = 91 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = 171 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)
Do t ∈ ℤ và 0 < t ≤ 365 nên ta có:
\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < 171 + 364k \le 365\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - 171 < 364k \le 194\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{{171}}{{364}} < k \le \frac{{97}}{{182}}\end{array} \right. \Leftrightarrow k = 0\]
Với k = 0 thì t = 171 + 364.0 = 171.
Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.