Giải phương trình: cot x - 3 = căn bậc hai 3 (1 - cot x)

Giải phương trình:

\[\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\].

Trả lời

\[\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\]

\[ \Leftrightarrow \cot x - 3 = \sqrt 3 - \sqrt 3 \cot x\]

\[ \Leftrightarrow \left( {1 + \sqrt 3 } \right)\cot x = \sqrt 3 + 3\]

\[ \Leftrightarrow \cot x = \frac{{\sqrt 3 \left( {1 + \sqrt 3 } \right)}}{{1 + \sqrt 3 }}\]

\[ \Leftrightarrow \cot x = \sqrt 3 \]

\[ \Leftrightarrow \cot x = \cot \frac{\pi }{6}\]

\[ \Leftrightarrow x = \frac{\pi }{6} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Vậy phương trình đã cho có các nghiệm là \[x = \frac{\pi }{6} + k\pi \] với k ℤ.

Câu hỏi cùng chủ đề

Xem tất cả