Từ một tấm tôn hình chữ nhật có chiều dài bằng a (cm), chiều rộng bằng b (cm), người ta cắt bỏ bốn hình vuông cạnh bằng x (cm) ở bốn góc
148
02/12/2023
Bài 10 trang 11 SBT Toán 8: Từ một tấm tôn hình chữ nhật có chiều dài bằng a (cm), chiều rộng bằng b (cm), người ta cắt bỏ bốn hình vuông cạnh bằng x (cm) ở bốn góc, rồi gấp và hàn thành thùng không có nắp (Hình 1). Viết biểu thức biểu thị:
a) Thể tích nước tối đa mà thùng có thể chứa được.
b) Tổng diện tích của năm mặt của chiếc thùng.
Trả lời
a) Thể tích nước tối đa mà thùng có thể chứa được là:
V = (a ‒ 2x)(b ‒ 2x)x = (ab – 2ax – 2bx + 4x2)x
= abx ‒ 2ax2 ‒ 2bx2 + 4x3 (cm3).
b) Tổng diện tích của năm mặt của chiếc thùng bằng diện tích hình chữ nhật trừ đi tổng diện tích bốn hình vuông cạnh bằng x ở 4 góc.
Vậy S = ab ‒ 4x2 (cm2).
Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Đơn thức và đa thức nhiều biến
Bài 2: Các phép toán với đa thức nhiều biến
Bài 3: Hằng đẳng thức đáng nhớ
Bài 4: Phân tích đa thức thành nhân tử
Bài 5: Phân thức đại số
Bài 6: Cộng, trừ phân thức