Từ hoành độ giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 trên khoảng

Quan sát các giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 (Hình 35).

Từ hoành độ giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 trên khoảng  (ảnh 1)

Từ hoành độ giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.

Trả lời

Với \[x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\] ta thấy tanx = 1 tại \(x = \frac{\pi }{4}\).

Do đó đường thẳng y = 1 cắt đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) tại điểm có hoành độ là \(\frac{\pi }{4}\).

Do hàm số y = tanx tuần hoàn với chu kì là π nên đường thẳng y = 1 cắt đồ thị hàm số y = tanx tại các điểm có hoành độ là \(x = \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả