Câu hỏi:
19/12/2023 113
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30'. Ngọn núi đó có độ cao so với mặt đất là bao nhiêu (làm tròn đến hàng phần trăm)?
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30'. Ngọn núi đó có độ cao so với mặt đất là bao nhiêu (làm tròn đến hàng phần trăm)?
Trả lời:
Gọi CH là chiều cao của ngọn núi.
Theo đề ta có: \(AB = 70\,\,m,\,\widehat {CAH} = 30^\circ ,\,\widehat {ABC} = 90^\circ + 15^\circ 30' = 105,5^\circ \).
Suy ra \(\widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \);
\(\widehat {ACB} = 180^\circ - \widehat {ABC} - \widehat {BAC} = 180^\circ - 105,5^\circ - 60^\circ = 14,5^\circ \).
Theo định lý sin trong tam giác ABC, ta có: \(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {ABC}}} \Leftrightarrow AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {BCA}}} = \frac{{70.\sin 105,5^\circ }}{{\sin 14,5^\circ }} \approx 269,41\,m\).
∆ACH vuông tại H nên ta có:
\(CH = {\rm{A}}C.\,\sin \widehat {CAH} = 269,41.\sin 30^\circ \approx 134,71\,m\).
Vậy ngọn núi đó có độ cao so với mặt đất xấp xỉ bằng 134,71 m.
Gọi CH là chiều cao của ngọn núi.
Theo đề ta có: \(AB = 70\,\,m,\,\widehat {CAH} = 30^\circ ,\,\widehat {ABC} = 90^\circ + 15^\circ 30' = 105,5^\circ \).
Suy ra \(\widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \);
\(\widehat {ACB} = 180^\circ - \widehat {ABC} - \widehat {BAC} = 180^\circ - 105,5^\circ - 60^\circ = 14,5^\circ \).
Theo định lý sin trong tam giác ABC, ta có: \(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {ABC}}} \Leftrightarrow AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {BCA}}} = \frac{{70.\sin 105,5^\circ }}{{\sin 14,5^\circ }} \approx 269,41\,m\).
∆ACH vuông tại H nên ta có:
\(CH = {\rm{A}}C.\,\sin \widehat {CAH} = 269,41.\sin 30^\circ \approx 134,71\,m\).
Vậy ngọn núi đó có độ cao so với mặt đất xấp xỉ bằng 134,71 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20
41
41
80
40
52
52
52
60
55
60
60
62
60
55
60
55
90
70
35
40
30
30
80
25
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20 |
41 |
41 |
80 |
40 |
52 |
52 |
52 |
60 |
55 |
60 |
60 |
62 |
60 |
55 |
60 |
55 |
90 |
70 |
35 |
40 |
30 |
30 |
80 |
25 |
|
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Câu 2:
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).
Câu 4:
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Câu 6:
Một lực \(\overrightarrow F \) có độ lớn \(60\sqrt 3 \) N tác động vào điểm M làm vật di chuyển theo phương nằm ngang từ M đến điểm N cách M một khoảng 10 m. Biết góc giữa \(\overrightarrow F \) và phương thẳng đứng là 30°. Tính công sinh bởi lực F.
Một lực \(\overrightarrow F \) có độ lớn \(60\sqrt 3 \) N tác động vào điểm M làm vật di chuyển theo phương nằm ngang từ M đến điểm N cách M một khoảng 10 m. Biết góc giữa \(\overrightarrow F \) và phương thẳng đứng là 30°. Tính công sinh bởi lực F.
Câu 7:
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Câu 8:
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Câu 10:
Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Câu 12:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
Câu 13:
Miền nghiệm của bất phương trình 2x – y + 6 ≤ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
Miền nghiệm của bất phương trình 2x – y + 6 ≤ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
Câu 14:
Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết \(\tan \alpha = - 2\sqrt 2 \) .
Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết \(\tan \alpha = - 2\sqrt 2 \) .