Câu hỏi:
03/04/2024 26
b. Từ các chữ số 0, 2, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn và có 6 chữ số đôi một khác nhau.
Trả lời:
Giải bởi Vietjack
b.
Phương pháp giải:
Chọn lần lượt từng chữ số, áp dụng quy tắc cộng và nhân hợp lí.
Giải chi tiết:
Gọi số cần lập là \[\overline {abcdef} ,{\mkern 1mu} \left( {{\mkern 1mu} a,b,c,d,e,f \in \left\{ {0;2;4;5;6;7} \right\},{\mkern 1mu} {\mkern 1mu} a \ne 0} \right)\]
+) \[f = 0\]: có 1 cách chọn
Khi đó: \[a\] có 5 cách chọn
Bộ \[\left( {b,c,d,e} \right)\] có: \[4!\] cách chọn
⇒ Có: \[1.5.4!\] số lập được
+) \[f \in \left\{ {2;4;6} \right\}:\] có 3 cách chọn
Khi đó: a có 4 cách chọn
Bộ \[\left( {b,c,d,e} \right)\] có: \[4!\] cách chọn
⇒ Có: \[3.4.4!\] số lập được
Vậy, số số tự nhiên chẵn và có 6 chữ số đôi một khác nhau có thể lập được là: \[1.5.4! + 3.4.4! = 408\] (số).
b.
Phương pháp giải:
Chọn lần lượt từng chữ số, áp dụng quy tắc cộng và nhân hợp lí.
Giải chi tiết:
Gọi số cần lập là \[\overline {abcdef} ,{\mkern 1mu} \left( {{\mkern 1mu} a,b,c,d,e,f \in \left\{ {0;2;4;5;6;7} \right\},{\mkern 1mu} {\mkern 1mu} a \ne 0} \right)\]
+) \[f = 0\]: có 1 cách chọn
Khi đó: \[a\] có 5 cách chọn
Bộ \[\left( {b,c,d,e} \right)\] có: \[4!\] cách chọn
⇒ Có: \[1.5.4!\] số lập được
+) \[f \in \left\{ {2;4;6} \right\}:\] có 3 cách chọn
Khi đó: a có 4 cách chọn
Bộ \[\left( {b,c,d,e} \right)\] có: \[4!\] cách chọn
⇒ Có: \[3.4.4!\] số lập được
Vậy, số số tự nhiên chẵn và có 6 chữ số đôi một khác nhau có thể lập được là: \[1.5.4! + 3.4.4! = 408\] (số).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có các chữ số đôi một khác nhau?
Xem đáp án »
03/04/2024
50
Câu 2:
Rút ngẫu nhiên 8 quân bài từ 1 bộ tú lơ khơ 52 quân. Xác suất lấy được 5 quân màu đỏ là:
Xem đáp án »
03/04/2024
49
Câu 3:
Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?
Xem đáp án »
03/04/2024
48
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Phát biểu nào sau đây SAI?
Xem đáp án »
03/04/2024
45
Câu 5:
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình là \[2x - y + 1 = 0\] và đường thẳng d’ có phương trình là \[2x - y + 5 = 0\]. Phép tịnh tiến theo vectơ \[\vec v\] nào sau đây biến d thành d’?
Xem đáp án »
03/04/2024
45
Câu 6:
c. Biết tổng của các hệ số trong khai triển \[{\left( {1 + {x^2}} \right)^n}\] bằng 512. Hãy tìm hệ số của số hạng chứa \[{x^{12}}\] trong khai triển đó.
Xem đáp án »
03/04/2024
42
Câu 7:
Có bao nhiêu cách sắp xếp 6 học sinh lớp 11 và 3 học sinh lớp 12 vào một hàng ghế dài gồm 9 ghế sao cho mỗi học sinh lớp 12 ngồi giữa 2 học sinh lớp 11?
Xem đáp án »
03/04/2024
41
Câu 9:
d. Cho 15 viên bi, trong đó có 4 viên bi màu đỏ, 5 viên bi màu vàng, 6 viên bi màu xanh. Chọn ngẫu nhiên 3 viên vi trong 15 viên bi nói trên. Tính xác suất để chọn được đúng 2 viên bi màu xanh.
Xem đáp án »
03/04/2024
40
Câu 10:
Tập xác định của hàm số \[y = \frac{{\sin {\mkern 1mu} x + \cos x}}{{\tan {\mkern 1mu} x}}\] là:
Xem đáp án »
03/04/2024
38
Câu 11:
Hệ số của số hạng chứa \[{x^{17}}\] trong khai triển \[{\left( {{x^2} - 2x} \right)^{10}}\] là
Xem đáp án »
03/04/2024
38
Câu 12:
Gọi S là tập hợp tất cả các số thực m để phương trình \[4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x\] có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]. Kết luận nào sau đây đúng?
Xem đáp án »
03/04/2024
36
Câu 13:
Trên khoảng \[\left( { - \frac{{3\pi }}{4};\frac{\pi }{4}} \right)\] tập giá trị của hàm số \[y = \cos x\] là:
Xem đáp án »
03/04/2024
34
Câu 14:
Cho phương trình \[\sin 2x + \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = 1\]. Đặt \[t = \sin {\mkern 1mu} x - \cos x\] ta được phương trình nào sau đây?
Xem đáp án »
03/04/2024
34
Câu 15:
Tính tổng \[S = {\left( {C_{2017}^0} \right)^2} + {\left( {C_{2017}^1} \right)^2} + {\left( {C_{2017}^2} \right)^2} + ... + {\left( {C_{2017}^{2017}} \right)^2}\].
Xem đáp án »
03/04/2024
34